Package ‘randomForestSRC’

October 10, 2025

Version 3.4.3
Date 2025-10-09

Title Fast Unified Random Forests for Survival, Regression, and
Classification (RF-SRC)

Author Hemant Ishwaran [aut],
Udaya B. Kogalur [aut, cre]

Maintainer Udaya B. Kogalur <ubk@kogalur.com>

BugReports https://github.com/kogalur/randomForestSRC/issues/
Depends R (>=4.3.0),
Imports parallel, data.tree, DiagrammeR

Suggests survival, pec, prodlim, mlbench, interp, caret, imbalance,
cluster, fst, data.table

Description Fast OpenMP parallel computing of Breiman's random forests for univariate, multivari-
ate, unsupervised, survival, competing risks, class imbalanced classification and quantile regres-
sion. New Mahalanobis splitting for correlated outcomes. Extreme random forests and random-
ized splitting. Suite of imputation methods for missing data. Fast random forests using subsam-
pling. Confidence regions and standard errors for variable importance. New improved hold-
out importance. Case-specific importance. Minimal depth variable importance. Visual-
ize trees on your Safari or Google Chrome browser. Anonymous random forests for data privacy.

License GPL (>=3)

URL https://www.randomforestsrc.org/ https://ishwaran.org/
NeedsCompilation yes

Repository CRAN

Date/Publication 2025-10-10 05:30:02 UTC

Contents
randomForestSRC-package L o 2
breast 6
follic e 7

https://github.com/kogalur/randomForestSRC/issues/
https://www.randomforestsrc.org/
https://ishwaran.org/

Index

randomForestSRC-package

gettree.afSIC L e e e e 7
hd . . e 11
holdout.vimp.rfsre 11
housing e 16
imbalanced.rfsrco 17
impute.rfsrc oL L L e e e 23
max.subtree.rfsrc L L L 27
NUITZENOMIC v v v v vt e et e e e e e e e e e e e e e e e 29
partial.rfsSrco 31
PO . o 37
peakVoO2 . . . e e 38
plot.competing.risk.rfsrco L 39
plot.quantreg.rfsrc L e e 41
plotrfsre L. 42
plot.subsample.rfsrc e e 43
plotsurvival.rfsre oL oL 45
plot.variable.rfsre L L L L 47
predictrfsreo L e e 51
printrfSrc oL 60
quantreg.rfSrco L e e e e e e 61
SIC . . e 66
fSIC.ANONYMOUS« v v v v s e e e e e e e 83
rfsrefast .« . .. L e 86
MSICNGWS o o e e 89
sidClustering.rfsrc e 90
subsample.rfsrc 95
tune.rfSrco L e e e 100
VAV L e 104
VEBIAI . . . v v vt ot e e e e e e e e e e e e e 104
vImp.IfSIC . ..o e 105
Wihs . . . 108
WINE . . . oo e e e 109

110

randomForestSRC-package

Fast Unified Random Forests for Survival, Regression, and Classifica-
tion (RF-SRC)

Description

Fast OpenMP-parallel implementation of Breiman’s random forests (Breiman, 2001) for regression,
classification, survival analysis (Ishwaran, 2008), competing risks (Ishwaran, 2012), multivariate
outcomes (Segal and Xiao, 2011), unsupervised learning (Mantero and Ishwaran, 2020), quantile
regression (Meinshausen, 2006; Zhang et al., 2019; Greenwald and Khanna, 2001), and imbalanced
g-classification (O’Brien and Ishwaran, 2019).

randomForestSRC-package 3

Supports deterministic and randomized splitting rules (Geurts et al., 2006; Ishwaran, 2015) across
all families. Variable importance (VIMP), holdout VIMP, and confidence regions (Ishwaran and Lu,
2019) can be computed for single and grouped variables. Includes minimal depth variable selection
(Ishwaran et al., 2010, 2011) and a fast interface for missing data imputation using multiple forest-
based methods (Tang and Ishwaran, 2017).

Tree structures can be visualized in Safari or Chrome for any family; see get. tree.

Package Overview

This package contains many useful functions. Users are encouraged to read the help files in full for
detailed guidance. Below is a brief overview of key functions to help navigate the package.

1.

rfsrc

The main entry point to the package. Builds a random forest using user-supplied training data.
The returned object is of class (rfsrc, grow).

. rfsrc.fast

A computationally efficient version of rfsrc using subsampling.

. quantreg.rfsrc, quantreg

Univariate and multivariate quantile regression forests for training and testing. Includes meth-
ods such as the Greenwald-Khanna (2001) algorithm, ideal for large data due to its memory
efficiency.

. predict.rfsrc, predict

Predicts outcomes by dropping test data down the trained forest. Returns an object of class
(rfsrc, predict).

. sidClustering.rfsrc, sidClustering

Unsupervised clustering using SID (Staggered Interaction Data). Also includes Breiman’s
artificial two-class method (Breiman, 2003).

. vimp, subsample, holdout.vimp

Functions for variable selection and importance assessment:

(a) vimp: Computes variable importance (VIMP) by perturbing each variable (e.g., via per-
mutation). Can also be computed directly in rfsrc and predict.rfsrc.

(b) subsample: Computes confidence intervals for VIMP using subsampling.

(c) holdout.vimp: Measures the effect of removing a variable from the model.

(d) VarPro (VarPro package): For advanced model-independent variable selection using
rule-based variable priority. Supports regression, classification, survival, and unsuper-
vised data. See https://www.varprotools.org.

. imbalanced.rfsrc, imbalanced

Implements g-classification and G-mean-based VIMP for class-imbalanced data.

. impute.rfsrc, impute

A fast interface for missing data imputation. While rfsrc and predict.rfsrc can handle
missing data internally, this provides a dedicated, efficient solution for imputation tasks.

. partial.rfsrc, partial

Computes partial dependence functions to assess the marginal effect of one or more variables
on the forest ensemble.

https://www.varprotools.org

4 randomForestSRC-package

Home page, Vignettes, Discussions, Bug Reporting, Source Code, Beta Builds

1. The package home page, with vignettes, manuals, GitHub links, and additional documenta-
tion, is available at: https://www.randomforestsrc.org/index.html

2. Questions, comments, and general usage discussions (non-bug-related) can be posted at: https:
//github.com/kogalur/randomForestSRC/discussions/

3. Bug reports should be submitted at: https://github.com/kogalur/randomForestSRC/
issues/

Please use this only for bugs, and include the following with your report:

* Qutput from sessionInfo().

¢ A minimal reproducible example including:

A minimal dataset required to reproduce the error.

The smallest runnable code needed to reproduce the issue.

Version details of R and all relevant packages.

A random seed (via set.seed()) if randomness is involved.

4. The latest stable release of the package is available on CRAN: https://cran.r-project.
org/package=randomForestSRC/

5. Development builds (unstable) with bug fixes and new features are hosted on GitHub: https:
//github.com/kogalur/randomForestSRC/

OpenMP Parallel Processing — Installation

This package supports OpenMP shared-memory parallel programming on systems where the archi-
tecture and operating system permit it. OpenMP is enabled by default.

Detailed instructions for configuring OpenMP parallel processing can be found at: https://www.
randomforestsrc.org/articles/installation.html

Note that running the package with OpenMP (or Open MPI) may increase memory (RAM) usage.
Users are advised to understand their system’s hardware limits and to monitor resource consumption
to avoid overtaxing CPU and memory capacity.

Reproducibility

Model reproducibility is determined by three components: the random seed, the forest topology
(i.e., the structure of trees), and terminal node membership for the training data. These elements
together allow the model and its terminal node statistics to be faithfully restored.

Other outputs, such as variable importance (VIMP) and performance metrics, rely on additional in-
ternal randomization and are not considered part of the model definition. As a result, such statistics
are subject to Monte Carlo variability and may differ across runs, even with the same seed.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

https://www.randomforestsrc.org/index.html
https://github.com/kogalur/randomForestSRC/discussions/
https://github.com/kogalur/randomForestSRC/discussions/
https://github.com/kogalur/randomForestSRC/issues/
https://github.com/kogalur/randomForestSRC/issues/
https://cran.r-project.org/package=randomForestSRC/
https://cran.r-project.org/package=randomForestSRC/
https://github.com/kogalur/randomForestSRC/
https://github.com/kogalur/randomForestSRC/
https://www.randomforestsrc.org/articles/installation.html
https://www.randomforestsrc.org/articles/installation.html

randomForestSRC-package 5

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Geurts, P., Ernst, D. and Wehenkel, L., (2006). Extremely randomized trees. Machine learning,
63(1):3-42.

Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries.
Proceedings of ACM SIGMOD, 30(2):58-66.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist.,
1:519-537.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Stat. Anal. Data Mining, 4:115-132

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.
Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.

Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.

Lu M., Sadiq S., Feaster D.J. and Ishwaran H. (2018). Estimating individual treatment effect in
observational data using random forest methods. J. Comp. Graph. Statist, 27(1), 209-219

Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data
Mining, 14(2):144-167.

Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-
999.

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249

Segal M.R. and Xiao Y. Multivariate random forests. (2011). Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery. 1(1):80-87.

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and
Data Mining, 10:363-377.

Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction inter-
vals. The American Statistician. 4:1-5.

See Also

get.tree.rfsrc,
holdout.vimp.rfsrc,

imbalanced.rfsrc, impute.rfsrc,

6 breast

max.subtree.rfsrc,

partial.rfsrc,plot.competing.risk.rfsrc,plot.rfsrc,plot.survival.rfsrc,plot.variable.rfsrc,
predict.rfsrc, print.rfsrc,

quantreg.rfsrc,

rfsrc, rfsrc.cart, rfsrc.fast,
sidClustering.rfsrc,
subsample.rfsrc,

tune.rfsrc,

vimp.rfsrc

breast Wisconsin Prognostic Breast Cancer Data

Description

Recurrence of breast cancer from 198 breast cancer patients, all of which exhibited no evidence of
distant metastases at the time of diagnosis. The first 30 features of the data describe characteristics
of the cell nuclei present in the digitized image of a fine needle aspirate (FNA) of the breast mass.

Source

The data were obtained from the UCI machine learning repository, see http://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic).

Examples

e
Standard analysis
HH m o

data(breast, package = "randomForestSRC")

breast <- na.omit(breast)

o <- rfsrc(status ~ ., data = breast, nsplit = 10)
print(o)

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)

follic

follic Follicular Cell Lymphoma

Description

Competing risk data set involving follicular cell lymphoma.

Format

A data frame containing:

age age
hgb hemoglobin (g/1)
clinstg clinical stage: 1=stage I, 2=stage 1l

ch chemotherapy
rt radiotherapy
time first failure time

status censoring status: O=censored, 1=relapse, 2=death
Source
Table 1.4b, Competing Risks: A Practical Perspective.
References
Pintilie M., (2006) Competing Risks: A Practical Perspective. West Sussex: John Wiley and Sons.

Examples

data(follic, package = "randomForestSRC")

follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
get.tree.rfsrc Extract a Single Tree from a Forest and plot it on your browser
Description

Extracts a single tree from a forest which can then be plotted on the users browser. Works for all
families. Missing data not permitted.

Usage

S3 method for class 'rfsrc'

get.tree(object, tree.id, target, m.target = NULL,
time, surv.type = c("mort”, "rel.freq”, "surv”, "years.lost”, "cif"”, "chf"),
class.type = c("bayes”, "rfq", "prob"),
ensemble = FALSE, oob = TRUE, show.plots = TRUE, do.trace = FALSE)

get.tree.rfsrc

Arguments
object An object of class (rfsrc, grow).
tree.id Integer specifying the tree to extract.
target For classification: integer or character indicating the class of interest (defaults to
the first class). For competing risks: integer between 1 and J (number of event
types) specifying the event of interest (default is the first event type).
m.target Character string specifying the target outcome for multivariate families. If un-
specified, a default is selected.
time For survival: time point at which the predicted value is evaluated (depends on
surv.type).
surv.type For survival: specifies the type of predicted value returned. See Details.
class. type For classification: specifies the type of predicted value. See Details.
ensemble Logical. If TRUE, prediction is based on the ensemble of all trees. If FALSE
(default), prediction is based on the specified tree.
oob Logical. Use OOB predicted values (TRUE) or in-bag values (FALSE). Only ap-
plies when ensemble=TRUE.
show.plots Logical. Should plots be displayed?
do.trace Number of seconds between progress updates.
Details

Extracts a specified tree from a forest and converts it into a hierarchical structure compatible with
the data.tree package. Plotting the resulting object renders an interactive tree visualization in the
user’s web browser.

Left-hand splits are shown. For continuous variables, the left split is displayed as an inequality (e.g.,
x < value); the right split is the reverse. For factor variables, the left daughter node is defined by a
set of levels assigned to it; the right daughter is its complement.

Terminal nodes are highlighted with color and display both sample size and predicted value. By
default, the predicted value corresponds to the prediction from the selected tree, and the sample
size refers to the in-bag cases reaching the terminal node. If ensemble = TRUE, the predicted value
equals the forest ensemble prediction, allowing visualization of the full forest predictor over the
selected tree’s partition. In this case, sample sizes refer to all observations (not just in-bag cases).

Predicted values displayed in terminal nodes are defined as follows:

1. For regression: the mean of the response.
2. For classification: depends on the class. type argument and target class:

e If class. type = "bayes”, the predicted class with the most votes, or the RFQ classifier
threshold in two-class problems.

e If class.type = "prob”, the class probability for the target class.

3. For multivariate families: the predicted value for the outcome specified by m. target, using
the logic above depending on whether the outcome is continuous or categorical.

4. For survival:

* mort: estimated mortality (Ishwaran et al., 2008).

get.tree.rfsrc 9

e rel.freq: relative frequency of mortality.
* surv: predicted survival probability at the specified time (time).

5. For competing risks:

* years.lost: expected number of life years lost.
e cif: cumulative incidence function.
* chf: cause-specific cumulative hazard function.

For cif and chf, predictions are evaluated at the time point given by time, and all metrics are
specific to the event type indicated by target.

Value

Invisibly, returns an object with hierarchical structure formatted for use with the data.tree package.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur
Many thanks to @dbargl on GitHub for the initial prototype of this function

B — oo
survival/competing risk
B — oo

survival - veteran data set but with factors

note that diagtime has many levels

data(veteran, package = "randomForestSRC")

vd <- veteran

vd$celltype=factor(vd$celltype)

vd$diagtime=factor(vd$diagtime)

vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5)
plot(get.tree(vd.obj, 3))

competing risks

data(follic, package = "randomForestSRC")

follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot(get.tree(follic.obj, 2))

Tt
regression

B o m o mmmmo
airg.obj <- rfsrc(Ozone ~ ., data = airquality)

plot(get.tree(airg.obj, 10))
oo o
two-class imbalanced data (see imbalanced function)

Bt o

data(breast, package = "randomForestSRC")

10

get.tree.rfsrc

breast <- na.omit(breast)
f <- as.formula(status ~ .)
breast.obj <- imbalanced(f, breast)

compare RFQ to Bayes Rule
plot(get.tree(breast.obj, 1, class.type = "rfq", ensemble = TRUE))
plot(get.tree(breast.obj, 1, class.type = "bayes”, ensemble = TRUE))

B oo o
classification
R
iris.obj <- rfsrc(Species ~., data = iris, nodesize = 10)

equivalent
plot(get.tree(iris.obj, 25))
plot(get.tree(iris.obj, 25, class.type = "bayes"”))

predicted probability displayed for terminal nodes
plot(get.tree(iris.obj, 25, class.type = "prob”, target "setosa"))
plot(get.tree(iris.obj, 25, class.type = "prob", target = "versicolor”))
plot(get.tree(iris.obj, 25, class.type = "prob”, target = "virginica"))

e e e
multivariate regression

HH m o
mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)

plot(get.tree(mtcars.mreg, 10, m.target = "mpg"))
plot(get.tree(mtcars.mreg, 10, m.target = "cyl"))

H m o
multivariate mixed outcomes
e

mtcars2 <- mtcars

mtcars2$carb <- factor(mtcars2$carb)

mtcars2$cyl <- factor(mtcars2$cyl)

mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)
plot(get.tree(mtcars.mix, 5, m.target = "cyl"”))
plot(get.tree(mtcars.mix, 5, m.target = "carb"))

B oo
unsupervised analysis
B oo

mtcars.unspv <- rfsrc(data = mtcars)
plot(get.tree(mtcars.unspv, 5))

hd 11

hd Hodgkin’s Disease

Description

Competing risk data set involving Hodgkin’s disease.

Format

A data frame containing:

age age

sex gender

trtgiven treatment: RT=radition, CMT=Chemotherapy and radiation
medwidsi mediastinum involvement: N=no, S=small, L=Large
extranod extranodal disease: Y=extranodal disease, N=nodal disease

clinstg clinical stage: 1=stage I, 2=stage II
time first failure time
status censoring status: O=censored, 1=relapse, 2=death

Source

Table 1.6b, Competing Risks: A Practical Perspective.

References

Pintilie M., (2006) Competing Risks: A Practical Perspective. West Sussex: John Wiley and Sons.

Examples

data(hd, package = "randomForestSRC")

holdout.vimp.rfsrc Hold out variable importance (VIMP)

Description

Hold out VIMP is calculated from the error rate of mini ensembles of trees (blocks of trees) grown
with and without a variable. Applies to all families.

12 holdout.vimp.rtsrc

Usage

S3 method for class 'rfsrc'
holdout.vimp(formula, data,
ntree = function(p, vtry){1000 * p / vtry},

nsplit = 10,
ntime = 50,
sampsize = function(x){x * .632},
samptype = "swor",
block.size = 10,
vtry = 1,
.2
Arguments
formula A symbolic description of the model to be fit.
data Data frame containing the y-outcome and x-variables.
ntree Specifies the number of trees used to grow the forest. Can be a function of data
dimension and number of holdout variables, or a fixed numeric value.
nsplit Non-negative integer specifying the number of random split points used to split
anode. A value of zero corresponds to deterministic splitting, which is signifi-
cantly slower.
ntime Integer value used for survival settings to constrain ensemble calculations to a
grid of ntime time points.
sampsize Specifies the size of the subsampled data. Can be either a function or a numeric
value.
samptype Type of bootstrap used when subsampling.
vtry Number of variables randomly selected to be held out when growing a tree. Can
also be a list for targeted holdout variable importance analysis. See details for
more information.
block.size Specifies the number of trees in a block when calculating holdout variable im-
portance.
Further arguments passed to rfsrc.
Details

Holdout variable importance (holdout VIMP) measures the importance of a variable by comparing
prediction error between two forests (blocks of trees): one in which selected variables are held out
during tree growing (the holdout forest) and one in which no variables are held out (the baseline
forest).

For each variable-block combination, the bootstrap samples used to grow the trees are the same in
both forests. The difference in out-of-bag (OOB) prediction error between the holdout and baseline
forests gives the holdout VIMP for that variable-block pair. The final holdout VIMP for a variable
is the average of these differences over all blocks in which the variable was held out.

The option vtry controls how many variables are held out per tree. The default is one, meaning a
single variable is held out per tree. Larger values of vtry increase the number of times each variable

holdout.vimp.rfsrc 13

is held out, reducing the required total number of trees. However, interpretation of holdout VIMP
changes when vtry exceeds one, and this option should be used cautiously.

High accuracy requires a sufficiently large number of trees. As a general guideline, we recom-
mend using ntree = 1000 * p / vtry, where p is the number of features. Accuracy also depends
on block.size, which determines how many trees comprise a block. Smaller values yield better
accuracy but are computationally more demanding. The most accurate setting is block.size = 1.
Ensure that block.size does not exceed ntree / p, otherwise insufficient trees may be available
for certain variables.

Targeted holdout VIMP analysis can be requested by specifying vtry as a list with two components:
a vector of variable indices (xvar) and a logical flag joint indicating whether to compute joint
VIMP. For example, to compute holdout VIMP only for variables 1, 4, and 5 individually:

vtry = list(xvar =c(1, 4, 5), joint = FALSE)

To compute the joint effect of removing these three variables together:

vtry = list(xvar =c(1, 4, 5), joint = TRUE)

Targeted analysis is useful when the user has prior knowledge of variables of interest and can sig-
nificantly reduce computation. Joint VIMP quantifies the combined importance of specific groups
of variables. See the Iris example below for illustration.

Value

Invisibly a list with the following components (which themselves can be lists):

importance Holdout VIMP.

baseline Prediction error for the baseline forest.

holdout Prediction error for the holdout forest.
Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Lu M. and Ishwaran H. (2018). Expert Opinion: A prediction-based alternative to p-values in
regression models. J. Thoracic and Cardiovascular Surgery, 155(3), 1130-1136.

See Also

vimp.rfsrc

Examples

B oo
regression analysis
e e

new York air quality measurements

14

holdout.vimp.rtsrc

airg.obj <- holdout.vimp(Ozone ~ ., data = airquality, na.action = "na.impute")

print(airq.obj$importance)

H — o
classification analysis
B m o

iris data
iris.obj <- holdout.vimp(Species ~., data = iris)
print(iris.obj$importance)

iris data using brier prediction error
iris.obj <- holdout.vimp(Species ~., data = iris, perf.type = "brier")
print(iris.obj$importance)

e G e e e
illustration of targeted holdout vimp analysis
H m o

iris data - only interested in variables 3 and 4
vtry <- list(xvar = c(3, 4), joint = FALSE)
print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor)

iris data - joint importance of variables 3 and 4
vtry <- list(xvar = c(3, 4), joint = TRUE)
print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor)

iris data - joint importance of variables 1 and 2
vtry <- list(xvar = c(1, 2), joint = TRUE)

print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor)
e
imbalanced classification (using RFQ)

B o

if (library("caret”, logical.return = TRUE)) {

experimental settings

n <- 400

q <- 20

ir <- 6

f <- as.formula(Class ~ .)

simulate the data, create minority class data

d <- twoClassSim(n, linearVars = 15, noiseVars = q)

d$Class <- factor(as.numeric(d$Class) - 1)

idx.@ <- which(d$Class == 0)

idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace
d <- d[c(idx.0,idx.1),, drop = FALSE]

VIMP for RFQ with and without blocking
vmp1 <- imbalanced(f, d, importance = TRUE, block.size = 1)$importanc

= FALSE)

e[, 1]

holdout.vimp.rfsrc

vmp1@ <- imbalanced(f, d, importance = TRUE, block.size = 10)$importance[, 1]

holdout VIMP for RFQ with and without blocking
hvmp1 <- holdout.vimp(f, d, rfq = TRUE,

perf.type = "g.mean”, block.size = 1)$importancel[, 1]
hvmp1@ <- holdout.vimp(f, d, rfqg = TRUE,

perf.type = "g.mean”, block.size = 10)$importance[, 1]

compare VIMP values

imp <- 100 * cbind(vmp1, vmp1@, hvmpl, hvmp10)

legn <- c("vimp-1", "vimp-10","hvimp-1", "hvimp-10")

colr <- rep(4,20+q)

colr[1:20] <- 2

ylim <- range(c(imp))

nms <- 1:(20+q)

par(mfrow=c(2,2))
barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms)
barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms)
barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim, names.arg=nms)
barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms)

}
-
multivariate regression analysis
e
mtcars.mreg <- holdout.vimp(Multivar(mpg, cyl) ~., data = mtcars,
vtry = 3,
block.size = 1,
samptype = "swr”,

sampsize = dim(mtcars)[1])
print(mtcars.mreg$importance)

e
mixed outcomes analysis
e

mtcars.new <- mtcars

mtcars.new$cyl <- factor(mtcars.new$cyl)

mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)

mtcars.mix <- holdout.vimp(cbind(carb, mpg, cyl) ~., data = mtcars.new,

ntree = 100,
block.size = 2,
vtry = 1)

print(mtcars.mix$importance)

Primary biliary cirrhosis (PBC) of the liver
data(pbc, package = "randomForestSRC")
pbc.obj <- holdout.vimp(Surv(days, status) ~ ., pbc,

16 housing

nsplit = 10,
ntree = 1000,
na.action = "na.impute”)

print(pbc.obj$importance)

WIHS analysis
cumulative incidence function (CIF) for HAART and AIDS stratified by IDU

data(wihs, package = "randomForestSRC")

wihs.obj <- holdout.vimp(Surv(time, status) ~ ., wihs,
nsplit = 3,
ntree = 100)

print(wihs.obj$importance)

housing Ames lowa Housing Data

Description

Data from the Ames Assessor’s Office used in assessing values of individual residential properties
sold in Ames, Iowa from 2006 to 2010. This is a regression problem and the goal is to predict
"SalePrice" which records the price of a home in thousands of dollars.

References
De Cock, D., (2011). Ames, Iowa: Alternative to the Boston housing data as an end of semester
regression project. Journal of Statistics Education, 19(3), 1-14.

Examples

load the data
data(housing, package = "randomForestSRC")

the original data contains lots of missing data, so impute it
use missForest, can be slow so grow trees with small training sizes
housing2 <- impute(data = housing, mf.q = 1, sampsize = function(x){x * .13})

same idea ... but directly use rfsrc.fast and multivariate missForest
housing3 <- impute(data = housing, mf.q = .5, fast = TRUE)

even faster, but potentially less acurate
housing4 <- impute(SalePrice~., housing, splitrule = "random”, nimpute = 1)

imbalanced.rfsrc 17

imbalanced.rfsrc Imbalanced Two Class Problems

Description

Implements various solutions to the two-class imbalanced problem, including the newly proposed
quantile-classifier approach of O’Brien and Ishwaran (2017). Also includes Breiman’s balanced
random forests undersampling of the majority class. Performance is assesssed using the G-mean,
but misclassification error can be requested.

Usage

S3 method for class 'rfsrc'

imbalanced(formula, data, ntree = 3000,
method = c("rfq", "brf", "standard"), splitrule = "auc”,
perf.type = NULL, block.size = NULL, fast = FALSE,

ratio = NULL, ...)
Arguments
formula A symbolic description of the model to be fit.
data A data frame containing the two-class y-outcome and x-variables.
ntree Number of trees to grow.
method Method used to fit the classifier. The default is "rfq"”, which implements the

random forest quantile classifier (RFQ) of O’Brien and Ishwaran (2017). The
option "brf" applies the balanced random forest (BRF) approach of Chen et al.
(2004), which undersamples the majority class to match the minority class size.
The option "standard” performs a standard random forest analysis.

splitrule Splitting rule used to grow trees. The default is "auc”, which optimizes G-mean
performance. Other supported options are "gini” and "entropy”.

perf.type Performance metric used for evaluating the classifier and computing downstream
quantities such as VIMP. Defaults depend on the method: "gmean” for RFQ and
BRF; "misclass” (misclassification error) for standard random forests. Users

may override this by specifying "gmean”, "misclass”, or "brier"” (normalized
Brier score). See examples for usage.

block.size Controls how the cumulative error rate is computed. If NULL, it is calculated
only once for the final tree. If set to an integer, cumulative error and VIMP are
computed in blocks of that size. If unspecified, uses the default in rfsrc.

fast Logical. If TRUE, uses the fast random forest implementation via rfsrc.fast
instead of rfsrc. Improves speed at the cost of accuracy. Applies only to RFQ.

ratio Optional and experimental. Specifies the proportion (between 0 and 1) of major-
ity class cases to sample during RFQ training. Sampling is without replacement.
Ignored for BRE.

Additional arguments passed to rfsrc to control random forest behavior.

18 imbalanced.rfsrc

Details

Imbalanced data, also known as the minority class problem, refers to two-class classification settings
where the majority class significantly outnumbers the minority class. This function supports two
approaches to address class imbalance:

* The random forests quantile classifier (RFQ) proposed by O’Brien and Ishwaran (2017).
* The balanced random forest (BRF) undersampling method of Chen et al. (2004).

By default, the performance metric used is the G-mean (Kubat et al., 1997), which balances sensi-
tivity and specificity.

Handling of missing values: Missing data are not supported for BRF or when the ratio option is
specified. In these cases, records with missing values are removed prior to analysis.

Variable importance: Permutation-based VIMP is used by default in this setting, in contrast to
anti-VIMP which is the default for other families. Empirical results suggest that permutation VIMP
is more reliable in highly imbalanced settings.

Tree count recommendation: We recommend using a relatively large value for ntree in im-
balanced problems to ensure stable performance estimation, especially for G-mean. As a general
guideline, use at least five times the usual number of trees.

Performance metrics: A helper function, get.imbalanced. performance, is provided for extract-
ing classification performance summaries. The metric names are self-explanatory in most cases.
Some key metrics include:

* F1: The harmonic mean of precision and recall.
* F1mod: The harmonic mean of sensitivity, specificity, precision, and negative predictive value.
* Figmean: The average of F1 and G-mean.

* F1modgmean: The average of Flmod and G-mean.

Value

A two-class random forest fit under the requested method and performance value.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Chen, C., Liaw, A. and Breiman, L. (2004). Using random forest to learn imbalanced data. Univer-
sity of California, Berkeley, Technical Report 110.

Kubat, M., Holte, R. and Matwin, S. (1997). Learning when negative examples abound. Machine
Learning, ECML-97: 146-153.

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249

See Also

rfsrc, rfsrc.fast

imbalanced.rfsrc

Examples

B oo o
use the breast data for illustration
B

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)

o.rfq <- imbalanced(f, breast)
print(o.rfq)

equivalent to:
rfsrc(f, breast, rfq = TRUE, ntree = 3000,

#it perf.type = "gmean"”, splitrule = "auc")
e e S et
detailed output using customized performance function

B o

Bt =

RF using G-mean performance with AUC splitting
H m oo

o.std <- imbalanced(f, breast, method = "stand”, perf.type = "gmean")

equivalent to:
rfsrc(f, breast, ntree = 3000, perf.type = "gmean”, splitrule = "auc")

o.brf <- imbalanced(f, breast, method = "brf")

equivalent to:
imbalanced(f, breast, method = "brf"”, perf.type = "gmean")

BRF call with misclassification performance

20

0.

tr
0.
0.
pr
pr
pr

#it
#it
#it
#it
#it

if

imbalanced.rfsrc

brf <- imbalanced(f, breast, method = "brf"”, perf.type = "misclass”)

n <- sample(1:nrow(breast), size = nrow(breast) / 2)
trn <- imbalanced(f, breast[trn,], importance = TRUE)
tst <- predict(o.trn, breast[-trn,], importance = TRUE)
int(o.trn)

int(o.tst)

int (100 * cbind(o.trn$impol[, 1], o.tst$impo[, 11))

illustrates how to optimize threshold on training data
improves Gmean for RFQ in many situations

(library("caret"”, logical.return = TRUE)) {

experimental settings

n <- 2 * 5000

q <- 20

ir <- 6

f <- as.formula(Class ~ .)

simulate the data, create minority class data

d <- twoClassSim(n, linearVars = 15, noiseVars = q)

d$Class <- factor(as.numeric(d$Class) - 1)

idx.@ <- which(d$Class == @)

idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

split data into train and test

trn.pt <- sample(1:nrow(d), size = nrow(d) / 2)
trn <- d[trn.pt, 1]

tst <- d[setdiff(1:nrow(d), trn.pt),]

run rfq on training data
o <- imbalanced(f, trn)

(1) default threshold (2) directly optimized gmean threshold
th.1 <- get.imbalanced.performance(o)["threshold"]
th.2 <- get.imbalanced.optimize(o)["threshold"]

training performance
cat("-------- train performance --------- \n")
print(get.imbalanced.performance(o, thresh=th.1))

imbalanced.rfsrc

#it
#it
#it
#it
#it
#it
#it

if

print(get.imbalanced.performance(o, thresh=th.2))

test performance

cat("-------- test performance --------- \n")

pred.o <- predict(o, tst)
print(get.imbalanced.performance(pred.o, thresh=th.1))
print(get.imbalanced.performance(pred.o, thresh=th.2))

illustrates RFQ with and without SMOTE
- simulation example using the caret R-package

- creates imbalanced data by randomly sampling the class 1 data
- use SMOTE from "imbalance"” package to oversample the minority

(library("caret"”, logical.return = TRUE) &
library("imbalance”, logical.return = TRUE)) {

experimental settings

n <- 5000

q <- 20

ir <- 6

f <- as.formula(Class ~ .)

simulate the data, create minority class data

d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)

idx.@ <- which(d$Class == @)

idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)

d <- d[c(idx.0,idx.1),, drop = FALSE]
d <- d[sample(1:nrow(d)), 1

define train/test split
trn <- sample(1:nrow(d), size = nrow(d) / 2, replace = FALSE)

now make SMOTE training data
newd.50 <- mwmote(d[trn, 1, numInstances = 50, classAttr = "Class")
newd.500 <- mwmote(d[trn, 1, numInstances = 500, classAttr = "Class")

fit RFQ with and without SMOTE

0.with.50 <- imbalanced(f, rbind(d[trn,], newd.50))
0.with.500 <- imbalanced(f, rbind(d[trn, 1, newd.500))
o.without <- imbalanced(f, d[trn, 1)

compare performance on test data

print(predict(o.with.50, d[-trn, 1))
print(predict(o.with.500, d[-trn, 1))
print(predict(o.without, d[-trn, 1))

21

22

imbalanced.rfsrc

#H#
illustrates effectiveness of blocked VIMP
H##

if (library("caret”, logical.return = TRUE)) {

experimental settings

n <- 1000
q <- 20
ir <- 6

f <- as.formula(Class ~ .)

simulate the data, create minority class data

d <- twoClassSim(n, linearVars = 15, noiseVars = q)

d$Class <- factor(as.numeric(d$Class) - 1)

idx.@ <- which(d$Class == @)

idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

permutation VIMP for BRF with and without blocking

blocked VIMP is a hybrid of Breiman-Cutler/Ishwaran-Kogalur VIMP

brf <- imbalanced(f, d, method = "brf", importance = "permute”, block.size = 1)
brfB <- imbalanced(f, d, method = "brf"”, importance = "permute”, block.size = 10)

permutation VIMP for RFQ with and without blocking
rfq <- imbalanced(f, d, importance = "permute”, block.size = 1)
rfgB <- imbalanced(f, d, importance = "permute”, block.size = 10)

compare VIMP values

imp <- 100 * cbind(brf$importance[, 1], brfB$importance[, 1],
rfg$importancel, 11, rfgB$importancel, 11)

legn <- c("BRF", "BRF-block"”, "RFQ", "RFQ-block")

colr <- rep(4,20+q)

colr[1:20] <- 2

ylim <- range(c(imp))

nms <- 1:(20+q)

par (mfrow=c(2,2))

barplot(imp[,1],col=colr,las=2,main=1legn[1],ylim=ylim,names.arg=nms)

barplot(imp[,2],col=colr,las=2,main=1legn[2],ylim=ylim,names.arg=nms)

barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms)

barplot(imp[,4],col=colr,las=2,main=1legn[4],ylim=ylim,names.arg=nms)

#H#
confidence intervals for G-mean permutation VIMP using subsampling
##

impute.rfsrc 23

if (library("caret”, logical.return = TRUE)) {

experimental settings

n <- 1000

q <- 20

ir <- 6

f <- as.formula(Class ~ .)

simulate the data, create minority class data

d <- twoClassSim(n, linearVars = 15, noiseVars = q)

d$Class <- factor(as.numeric(d$Class) - 1)

idx.0 <- which(d$Class == 0)

idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

RFQ
0 <- imbalanced(Class ~ ., d, importance = "permute”, block.size = 10)

subsample RFQ
smp.o <- subsample(o, B = 100)

plot(smp.o, cex.axis = .7)
}
impute.rfsrc Impute Only Mode
Description

Fast imputation mode. A random forest is grown and used to impute missing data. No ensemble
estimates or error rates are calculated.

Usage

S3 method for class 'rfsrc'
impute(formula, data,
ntree = 100, nodesize = 1, nsplit = 10,
nimpute = 2, fast = FALSE, blocks,
mf.q, max.iter = 10, eps = 0.01,
ytry = NULL, always.use = NULL, verbose = TRUE,
)

Arguments

formula A symbolic model description. Can be omitted if outcomes are unspecified or if
distinction between outcomes and predictors is unnecessary. Ignored for multi-
variate missForest.

24

impute.rfsrc

data A data frame containing variables to be imputed.

ntree Number of trees grown for each imputation.

nodesize Minimum terminal node size in each tree.

nsplit Non-negative integer for specifying random splitting.

nimpute Number of iterations for the missing data algorithm. Ignored for multivariate
missForest, which iterates to convergence unless capped by max.iter.

fast If TRUE, uses rfsrcFast instead of rfsrc. Increases speed but may reduce
accuracy.

blocks Number of row-wise blocks to divide the data into. May improve speed for large
data, but can reduce imputation accuracy. No action if unspecified.

mf.q Enables missForest. Either a fraction (between O and 1) of variables treated
as responses, or an integer indicating number of response variables. mf.q =1
corresponds to standard missForest.

max.iter Maximum number of iterations for multivariate missForest.

eps Convergence threshold for multivariate missForest (change in imputed values).

ytry Number of variables used as pseudo-responses in unsupervised forests. See
Details.

always.use Character vector of variables always included as responses in multivariate miss-
Forest. Ignored by other methods.

verbose If TRUE, prints progress during multivariate missForest imputation.
Additional arguments passed to or from methods.

Details

1. Before imputation, observations and variables with all values missing are removed.

A forest is grown and used solely for imputation. No ensemble statistics (e.g., error rates) are
computed. Use this function when imputation is the only goal.

. For standard imputation (not missForest), splits are based only on non-missing data. If a split

variable has missing values, they are temporarily imputed by randomly drawing from in-bag,
non-missing values to allow node assignment.

. If mf . qis specified, multivariate missForest imputation is applied (Stekhoven and B\"uhlmann,

2012). A fraction (or integer count) of variables are selected as multivariate responses, pre-
dicted using the remaining variables with multivariate composite splitting. Each round im-
putes a disjoint set of variables, and the full cycle is repeated until convergence, controlled by
max.iter and eps. Setting mf.q = 1 reverts to standard missForest. This method is typically
the most accurate, but also the most computationally intensive.

. If no formula is provided, unsupervised splitting is used. The default ytry is sqrt(p), where

p is the number of variables. For each of mtry candidate variables, a random subset of ytry
variables is selected as pseudo-responses. A multivariate composite splitting rule is applied,
and the split is made on the variable yielding the best result (Tang and Ishwaran, 2017).

. If no missing values remain after preprocessing, the function returns the processed data with-

out further action.

. All standard rfsrc options apply; see examples below for illustration.

impute.rfsrc 25

Value

Invisibly, the data frame containing the orginal data with imputed data overlaid.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Stekhoven D.J. and Buhlmann P. (2012). MissForest-non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112-118.

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and
Data Mining, 10:363-377.

See Also

rfsrc, rfsrc.fast

Examples

et
example of survival imputation
B m o

default everything - unsupervised splitting
data(pbc, package = "randomForestSRC")
pbcl.d <- impute(data = pbc)

imputation using outcome splitting
f <- as.formula(Surv(days, status) ~ .)
pbc2.d <- impute(f, data = pbc, nsplit = 3)

random splitting can be reasonably good
pbc3.d <- impute(f, data = pbc, splitrule = "random”, nimpute = 5)

H — oo
example of regression imputation

Bt o

airl.d <- impute(data = airquality, nimpute = 5)

air2.d <- impute(Ozone ~ ., data = airquality, nimpute = 5)
air3.d <- impute(Ozone ~ ., data = airquality, fast = TRUE)

B oo
multivariate missForest imputation

B = m o

data(pbc, package = "randomForestSRC")

26

impute.rfsrc

missForest algorithm - uses 1 variable at a time for the response
pbc.d <- impute(data = pbc, mf.q = 1)

multivariate missForest - use 10 percent of variables as responses
i.e. multivariate missForest
pbc.d <- impute(data = pbc, mf.q = .01)

missForest but faster by using random splitting
pbc.d <- impute(data = pbc, mf.q = 1, splitrule = "random")

missForest but faster by increasing nodesize
pbc.d <- impute(data = pbc, mf.q = 1, nodesize = 20, splitrule = "random")

missForest but faster by using rfsrcFast
pbc.d <- impute(data = pbc, mf.q = 1, fast = TRUE)

o
another example of multivariate missForest imputation

(suggested by John Sheffield)

B o

test_rows <- 1000
set.seed(1234)

<- rpois(test_rows, 500)

+ rnorm(test_rows, 50, 50)
rnorm(test_rows, 50, 50)
rnorm(test_rows, 50, 50)
rnorm(test_rows, 50, 50)
rnorm(test_rows, 50, 50)
rnorm(test_rows, 50, 50)
rnorm(test_rows, 50, 50)
rnorm(test_rows, 50, 50)

H0R h D QO T O
~A

Sm ho Q0 T O

+ o+ + + o+ o+ o+

fake_data <- data.frame(a, b, c, d, e, f, g, h, i)

fake_data_missing <- data.frame(lapply(fake_data, function(x) {
x[runif(test_rows) <= 0.4] <- NA
X

m

imputed_data <- impute(

data = fake_data_missing,
mf.q = 0.2,

ntree = 100,

fast = TRUE,

verbose = TRUE

)

par(mfrow=c(3,3))
o=lapply(1:ncol(imputed_data), function(j) {
pt <- is.na(fake_data_missing[, j1)

max.subtree.rfsrc

27

x <- fake_datal[pt, jJ
y <- imputed_datalpt, jJ
plot(x, y, pch = 16, cex = 0.8, xlab = "raw data”,

ylab = "imputed data”, col = 2)
points(x, y, pch = 1, cex = 0.8, col = gray(.9))
lines(supsmu(x, y, span = .25), 1ty = 1, col = 4, 1lwd = 4)
mtext (colnames(imputed_data)[j])

NULL
D

max.subtree.rfsrc

Acquire Maximal Subtree Information

Description

Extract maximal subtree information from a RF-SRC object. Used for variable selection and iden-
tifying interactions between variables.

Usage

S3 method for class 'rfsrc'
max.subtree(object,

max.order = 2, sub.order = FALSE, conservative = FALSE, ...)
Arguments
object An object of class (rfsrc, grow) or (rfsrc, forest).
max.order Non-negative integer specifying the maximum interaction order for which min-
imal depth is calculated. Defaults to 2. Set max.order=90 to return first-order
depths only. When max.order=0, conservative is automatically set to FALSE.
sub.order Logical. If TRUE, returns the minimal depth of each variable conditional on every
other variable. Useful for investigating variable interdependence. See Details.
conservative Logical. If TRUE, uses a conservative threshold for selecting variables based on
the marginal minimal depth distribution (Ishwaran et al., 2010). If FALSE, uses
the tree-averaged distribution, which is less conservative and typically identifies
more variables in high-dimensional settings.
Additional arguments passed to or from other methods.
Details

The maximal subtree for a variable x is the largest subtree in which the root node splits on x. The
largest possible maximal subtree is the full tree (root node), though multiple maximal subtrees may
exist for a variable. A variable may also have no maximal subtree if it is never used for splitting.
See Ishwaran et al. (2010, 2011) for further discussion.

28

max.subtree.rfsrc

The minimal depth of a maximal subtree-called the first-order depth-quantifies the predictive strength
of a variable. It is defined as the distance from the root node to the parent of the closest maximal

subtree for x. Smaller values indicate stronger predictive impact. A variable is flagged as strong if

its minimal depth is below the mean of the minimal depth distribution.

The second-order depth is the distance from the root to the second-closest maximal subtree of x. To
request depths beyond first order, use the max.order option (e.g., max.order = 2 returns both first
and second-order depths). Set max.order = @ to retrieve first-order depths for each variable in each
tree.

Set sub.order = TRUE to obtain the relative minimal depth of each variable j within the maximal
subtree of another variable i. This returns a p x p matrix (with p the number of variables) whose
entry (i,j) is the normalized relative depth of j in i’s subtree. Entry (i,i) gives the depth of i relative
to the root. Read the matrix across rows to assess inter-variable relationships: small (i,j) entries
suggest interactions between variables i and j.

For competing risks, all analyses are unconditional (non-event specific).

Value

Invisibly returns a list with the following components:

order Matrix of order depths for each variable up to max.order, averaged over trees.
The matrix has p rows and max.order columns, where p is the number of vari-
ables. If max.order =9, returns a matrix of dimension p x ntree containing
first-order depths for each variable by tree.

count Average number of maximal subtrees per variable, normalized by tree size.

nodes.at.depth List of vectors recording the number of non-terminal nodes at each depth level
for each tree.

sub.order Matrix of average minimal depths of each variable relative to others (i.e., condi-
tional minimal depth matrix). NULL if sub.order = FALSE.

threshold Threshold value for selecting strong variables based on the mean of the minimal
depth distribution.

threshold.1se Conservative threshold equal to the mean minimal depth plus one standard error.

topvars Character vector of selected variable names using the threshold criterion.
topvars.1se Character vector of selected variable names using the threshold. 1se criterion.
percentile Percentile value of minimal depth for each variable.

density Estimated density of the minimal depth distribution.

second.order. threshold
Threshold used for selecting strong second-order depth variables.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

nutrigenomic 29

References

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Statist. Anal. Data Mining, 4:115-132.

See Also

holdout.vimp.rfsrc, vimp.rfsrc

Examples

B o
survival analysis
first and second order depths for all variables

o
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time, status) ~ . , data = veteran)

v.max <- max.subtree(v.obj)

first and second order depths
print(round(v.max$order, 3))

the minimal depth is the first order depth
print(round(v.max$order[, 1], 3))

strong variables have minimal depth less than or equal
to the following threshold
print(v.max$threshold)

this corresponds to the set of variables
print(v.max$topvars)

B m o
regression analysis

try different levels of conservativeness

HH m o

mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
max.subtree(mtcars.obj)$topvars
max.subtree(mtcars.obj, conservative = TRUE)$topvars

nutrigenomic Nutrigenomic Study

30 nutrigenomic

Description

Investigates the effects of five dietary treatments on 21 liver lipids and 120 hepatic gene expressions
in wild-type and PPAR-alpha deficient mice. A multivariate mixed random forest analysis is per-
formed by regressing gene expression, diet, and genotype (x-variables) on lipid expression profiles
(multivariate y-responses).

References

Martin P.G. et al. (2007). Novel aspects of PPAR-alpha-mediated regulation of lipid and xenobiotic
metabolism revealed through a nutrigenomic study. Hepatology, 45(3), 767-777.

Examples

B oo
multivariate regression forests using Mahalanobis splitting
lipids (all real values) used as the multivariate y

B oo

load the data
data(nutrigenomic, package = "randomForestSRC")

parse into y and x data

ydta <- nutrigenomic$lipids

xdta <- data.frame(nutrigenomic$genes,
diet = nutrigenomic$diet,
genotype = nutrigenomic$genotype)

multivariate mixed forest call

obj <- rfsrc(get.mv.formula(colnames(ydta)),
data.frame(ydta, xdta),
importance=TRUE, nsplit = 10,

splitrule = "mahalanobis”)
print(obj)
B oo
plot the standarized performance and VIMP values
B = m o mmmmo

acquire the error rate for each of the 21-coordinates
standardize to allow for comparison across coordinates
serr <- get.mv.error(obj, standardize = TRUE)

acquire standardized VIMP
svimp <- get.mv.vimp(obj, standardize = TRUE)

par(mfrow = c(1,2))
plot(serr, xlab = "Lipids", ylab = "Standardized Performance")
matplot(svimp, xlab = "Genes/Diet/Genotype”, ylab = "Standardized VIMP")

e G e
plot some trees

partial.rfsrc

plot(get.tree(obj, 1))
plot(get.tree(obj, 2))
plot(get.tree(obj, 3))

#H#

Compare above to (1) user specified covariance matrix

#it (2) default composite (independent) splitting
#H#
e T

user specified sigma matrix

obj2 <- rfsrc(get.mv.formula(colnames(ydta)),
data.frame(ydta, xdta),
importance = TRUE, nsplit = 10,
splitrule = "mahalanobis”,
sigma = cov(ydta))

print(obj2)

default independence split rule

obj3 <- rfsrc(get.mv.formula(colnames(ydta)),
data.frame(ydta, xdta),
importance=TRUE, nsplit = 10)

print(obj3)

compare vimp

imp <- data.frame(mahalanobis = rowMeans(get.mv.vimp(obj, standardize = TRUE)),
mahalanobis2 = rowMeans(get.mv.vimp(obj2, standardize = TRUE)),
default rowMeans(get.mv.vimp(obj3, standardize = TRUE)))

print(head(100 * imp[order(imp$mahalanobis, decreasing = TRUE), 1, 15))

partial.rfsrc Acquire Partial Effect of a Variable

Description

Direct, fast inferface for partial effect of a variable. Works for all families.

Usage

partial.rfsrc(object, oob = TRUE,
partial.type = NULL, partial.xvar = NULL, partial.values = NULL,
partial.xvar2 = NULL, partial.values2 = NULL,
partial.time = NULL, get.tree = NULL, seed = NULL, do.trace = FALSE,

32 partial.rfsrc

Arguments
object An object of class (rfsrc, grow).
oob By default out-of-bag values are returned, but inbag values can be requested by

setting this option to FALSE.
partial.type Character vector specifying type of predicted value requested. See details below.
partial.xvar Character value specifying the single primary partial x-variable to be used.
partial.values Vector of values that the primary partialy x-variable will assume.

partial.xvar2 Vector of character values specifying the second order x-variables to be used.

partial.values?2
Vector of values that the second order x-variables will assume. Each second or-
der x-variable can only assume a single value. This the length of partial.xvar2
and partial.values2 will be the same. In addition, the user must do the ap-
propriate conversion for factors, and represent a value as a numeric element.

partial.time For survival families, the time at which the predicted survival value is evaluated
at (depends on partial. type).

get.tree Vector of integer(s) identifying trees over which the partial values are calculated
over. By default, uses all trees in the forest.

seed Negative integer specifying seed for the random number generator.

do.trace Number of seconds between updates to the user on approximate time to com-
pletion.

Further arguments passed to or from other methods.

Details
Used for direct, efficient call to obtain partial plot effects. This function is intended primarily for
experts.
Out-of-bag (OOB) values are returned by default.

For factors, the partial value should be encoded as a positive integer reflecting the level number of
the factor. The actual label of the factor should not be used.

The utility function get.partial.plot.data is supplied for processing returned raw partial effects
in a format more convenient for plotting. Options are specified as in plot.variable. See examples
for illustration.

Raw partial plot effects data is returned either as an array or a list of length equal to the number of
outcomes (length is one for univariate families) with entries depending on the underlying family:

1. For regression, partial plot data is returned as a listin regrOutput with dim [n] x [1ength(partial.values)].

2. For classification, partial plot data is returned as a list in classOutput of dim [n] x [1 +
yvar.nlevels[.]] x [length(partial.values)].

3. For mixed multivariate regression, values are returned in list format both in regrOutput and
classOutput

4. For survival, values are returned as either a matrix or array in survOutput. Depending on
partial type specified this can be:

partial.rfsrc 33

¢ For partial type surv returns the survival function of dim [n] x [length(partial.time)]
x [length(partial.values)].

* For partial type mort returns mortality of dim [n] x [1ength(partial.values)].

* For partial type chf returns the cumulative hazard function of dim [n] x [length(partial.time)]
x [length(partial.values)].

5. For competing risks, values are returned as either a matrix or array in survOutput. Depending
on the options specified this can be:

* For partial type years.lost returns the expected number of life years lost of dim [n] x
[length(event.info$event.type)] x [length(partial.values)].

* For partial type cif returns the cumulative incidence function of dim [n] x [length(partial.time)]
x [1length(event.info$event.type)] x [1length(partial.values)].

* For partial type chf returns the cumulative hazard function of dim [n] x [1length(partial.time)]
x [length(event.info$event.type)] x [length(partial.values)].

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H., Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

See Also

plot.variable.rfsrc

Examples

#it

regression

#i#

————m

airqg.obj <- rfsrc(Ozone ~ ., data = airquality)

partial effect for wind
partial.obj <- partial(airq.obj,
partial.xvar = "Wind",
partial.values = airq.obj$xvar$wind)
pdta <- get.partial.plot.data(partial.obj)

plot partial values
plot(pdta$x, pdtas$yhat, type = "b"”, pch = 16,
xlab = "wind”, ylab = "partial effect of wind")

34

partial.rfsrc

example where we display all the partial effects

instead of averaging - use the granule=TRUE option

pdta <- get.partial.plot.data(partial.obj, granule = TRUE)
boxplot(pdtas$yhat ~ pdta$x, xlab = "Wind”, ylab = "partial effect"”)

##
regression: partial effects for two variables simultaneously
#H#
e

airqg.obj <- rfsrc(Ozone ~ ., data = airquality)

specify wind and temperature values of interest
wind <- sort(unique(airqg.obj$xvar$Wind))
temp <- sort(unique(airq.obj$xvar$Temp))

partial effect for wind, for a given temp
pdta <- do.call(rbind, lapply(temp, function(x2) {
o <- partial(airg.obj,
partial.xvar = "Wind", partial.xvar2 = "Temp”,
partial.values = wind, partial.values2 = x2)
cbind(wind, x2, get.partial.plot.data(o)$yhat)

1))
pdta <- data.frame(pdta)
colnames(pdta) <- c("wind”, "temp"”, "effectSize")

coplot of partial effect of wind and temp
coplot(effectSize ~ wind|temp, pdta, pch = 16, overlap = 0)

##

regression: partial effects for three variables simultaneously
(can be slow, so modify accordingly)

##

n <- 1000

x <= matrix(rnorm(n * 3), ncol = 3)

y <= x[, 11 + x[, 11 * x[, 21 + x[, 11 *» x[, 2] * x[, 3]
o <- rfsrc(y ~ ., data = data.frame(y =y, x))

define target x values
x1 <- seq(-3, 3, length = 40)
x2 <- x3 <- seq(-3, 3, length = 10)

extract second order partial effects
pdta <- do.call(rbind,
lapply(x3, function(x3v) {
cat("outer loop x3 = ", x3v, "\n")
do.call(rbind,lapply(x2, function(x2v) {
o <- partial(o,

partial.rfsrc

partial.xvar = "X1",
partial.values = x1,
partial.xvar2 = c("X2", "X3"),
partial.values2 = c(x2v, x3v))
cbind(x1, x2v, x3v, get.partial.plot.data(o)$yhat)
»
1))
pdta <- data.frame(pdta)
colnames(pdta) <- c("x1", "x2", "x3", "effectSize")

coplot of partial effects
coplot(effectSize ~ x1|x2*x3, pdta, pch = 16, overlap = @)

##

classification

H##
e G e

iris.obj <- rfsrc(Species ~., data = iris)

partial effect for sepal length

partial.obj <- partial(iris.obj,
partial.xvar = "Sepal.lLength”,
partial.values = iris.obj$xvar$Sepal.Length)

extract partial effects for each species outcome

pdtal <- get.partial.plot.data(partial.obj, target = "setosa")
pdta2 <- get.partial.plot.data(partial.obj, target = "versicolor”)
pdta3 <- get.partial.plot.data(partial.obj, target = "virginica”)

plot the results
par(mfrow=c(1,1))
plot(pdtal$x, pdtal$yhat, type="b", pch = 16,

xlab = "sepal length”, ylab = "adjusted probability”,

ylim = range(pdtal$yhat,pdta2$yhat,pdta3syhat))
points(pdta2$x, pdta2$yhat, col = 2, type = "b", pch = 16)
points(pdta3$x, pdta3$yhat, col = 4, type = "b", pch = 16)
legend("topleft”, legend=levels(iris.obj$yvar), fill = c(1, 2, 4))

#H#
survival
##

data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100)

partial effect of age on mortality
partial.obj <- partial(v.obj,
partial.type = "mort”,

36

partial.xvar = "age",
partial.values = v.obj$xvars$age,
partial.time = v.obj$time.interest)

pdta <- get.partial.plot.data(partial.obj)

plot(lowess(pdta$x, pdtasyhat, f = 1/3),
type = "1", xlab = "age", ylab = "adjusted mortality")

example where x is discrete - partial effect of age on mortality
we use the granule=TRUE option
partial.obj <- partial(v.obj,
partial.type = "mort”,
partial.xvar = "trt",
partial.values = v.obj$xvars$trt,
partial.time = v.obj$time.interest)
pdta <- get.partial.plot.data(partial.obj, granule = TRUE)
boxplot(pdtas$yhat ~ pdta$x, xlab = "treatment”, ylab = "partial effect”)

partial effects of karnofsky score on survival
karno <- quantile(v.obj$xvar$karno)
partial.obj <- partial(v.obj,
partial.type = "surv",
partial.xvar = "karno”,
partial.values = karno,
partial.time = v.obj$time.interest)
pdta <- get.partial.plot.data(partial.obj)

matplot(pdta$partial.time, t(pdtasyhat), type = "1", 1ty = 1,
xlab = "time", ylab = "karnofsky adjusted survival")
legend("topright”, legend = paste@("karnofsky = ", karno), fill = 1:5)

#i#t

competing risk

##

B o

data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)

partial effect of age on years lost
partial.obj <- partial(follic.obj,
partial.type = "years.lost"”,
partial.xvar = "age",
partial.values = follic.obj$xvars$age,
partial.time = follic.obj$time.interest)
pdtal <- get.partial.plot.data(partial.obj, target
pdta2 <- get.partial.plot.data(partial.obj, target

D)
2)

par(mfrow=c(2,2))
plot(lowess(pdtal$x, pdtal$yhat),

partial.rfsrc

pbc

type = "1", xlab = "age”, ylab = "adjusted years lost relapse"”)
plot(lowess(pdta2$x, pdta2$yhat),
type = "1", xlab = "age"”, ylab = "adjusted years lost death”)

partial effect of age on cif

partial.obj <- partial(follic.obj,
partial.type = "cif",
partial.xvar = "age",
partial.values = quantile(follic.obj$xvar$age),
partial.time = follic.obj$time.interest)

pdtal <- get.partial.plot.data(partial.obj, target = 1)

pdta2 <- get.partial.plot.data(partial.obj, target = 2)

matplot(pdtal$partial.time, t(pdtals$yhat), type = "1", 1ty
xlab = "time"”, ylab = "age adjusted cif for relapse”)

matplot(pdta2$partial.time, t(pdta2$yhat), type = "1", lty
xlab = "time"”, ylab = "age adjusted cif for death")

1
—_

1
—_

##

multivariate mixed outcomes

##

B oo o

mtcars2 <- mtcars

mtcars2$carb <- factor(mtcars2$carb)

mtcars2$cyl <- factor(mtcars2$cyl)

mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)

partial effect of displacement for each the three-outcomes
partial.obj <- partial(mtcars.mix,

partial.xvar = "disp”,

partial.values = mtcars.mix$xvar$disp)
pdtal <- get.partial.plot.data(partial.obj, m.target = "carb")
pdta2 <- get.partial.plot.data(partial.obj, m.target = "mpg")
pdta3 <- get.partial.plot.data(partial.obj, m.target = "cyl")

par(mfrow=c(2,2))

plot(lowess(pdtal$x, pdtal$yhat), type = "1", xlab="displacement”, ylab="carb")
plot(lowess(pdta2$x, pdta2$yhat), type = "1", xlab="displacement”, ylab="mpg")
plot(lowess(pdta3$x, pdta3$yhat), type = "1", xlab="displacement”, ylab="cyl")

pbc Primary Biliary Cirrhosis (PBC) Data

38 peakVO?2

Description

Data from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between
1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that ten-year interval,
met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine. The
first 312 cases in the data set participated in the randomized trial and contain largely complete data.

Source

Flemming and Harrington, 1991, Appendix D.1.

References
Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York:
Wiley.

Examples

data(pbc, package = "randomForestSRC")

pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nsplit = 3)
peakV02 Systolic Heart Failure Data
Description

The data involve 2231 patients with systolic heart failure who underwent cardiopulmonary stress
testing at the Cleveland Clinic. The primary end point was all-cause death. In total, 39 variables
were measured for each patient, including baseline clinical values and exercise stress test results. A
key variable of interest is peak VO2 (mL/kg per min), the peak respiratory exchange ratio. More
details regarding the data can be found in Hsich et al. (2011).

References

Hsich E., Gorodeski E.Z.,Blackstone E.H., Ishwaran H. and Lauer M.S. (2011). Identifying impor-
tant risk factors for survival in systolic heart failure patients using random survival forests. Circu-
lation: Cardio. Qual. Outcomes, 4(1), 39-45.

Examples

load the data
data(peakV02, package = "randomForestSRC")

random survival forest analysis
o <- rfsrc(Surv(ttodead, died)~., peakV02)
print(o)

partial effect of peak V@2 on mortality

plot.competing.risk.rfsrc

partial.o <- partial(o,
partial.type = "mort”,
partial.xvar = "peak.vo2",
partial.values = o$xvar$peak.vo2,
partial.time = o$time.interest)
pdta.m <- get.partial.plot.data(partial.o)

partial effect of peak V@2 on survival
pvo2 <- quantile(o$xvar$peak.vo2)
partial.o <- partial(o,

partial.type = "surv”,

partial.xvar = "peak.vo2",

partial.values = pvo2,

partial.time = o$time.interest)
pdta.s <- get.partial.plot.data(partial.o)

compare the two plots
par(mfrow=c(1,2))

plot(lowess(pdta.m$x, pdta.m$yhat, f = 2/3),
type = "1", xlab = "peak V02", ylab = "adjusted mortality")
rug(o$xvar$peak.vo2)

matplot(pdta.s$partial.time, t(pdta.s$yhat), type = "1", 1ty =1,
xlab = "years"”, ylab = "peak V02 adjusted survival")
legend("bottomleft”, legend = paste@("peak V02 = ", pvo2),
bty = "n", cex = .75, fill = 1:5)

plot.competing.risk.rfsrc
Plots for Competing Risks

Description

Plot useful summary curves from a random survival forest competing risk analysis.

Usage

S3 method for class 'rfsrc'

plot.competing.risk(x, plots.one.page = FALSE, ...)
Arguments

X An object of class (rfsrc, grow) or (rfsrc, predict).

plots.one.page Should plots be placed on one page?

Further arguments passed to or from other methods.

40 plot.competing.risk.rfsrc

Details

Given a random survival forest object from a competing risk analysis (Ishwaran et al. 2014), plots
from top to bottom, left to right: (1) cause-specific cumulative hazard function (CSCHF) for each
event, (2) cumulative incidence function (CIF) for each event, and (3) continuous probability curves
(CPC) for each event (Pepe and Mori, 1993).

Does not apply to right-censored data. Whenever possible, out-of-bag (OOB) values are displayed.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

Pepe, M.S. and Mori, M., (1993). Kaplan-Meier, marginal or conditional probability curves in
summarizing competing risks failure time data? Statistics in Medicine, 12(8):737-751.

See Also

follic, hd, rfsrc, wihs

Examples

B — oo
follicular cell lymphoma
H m oo

data(follic, package = "randomForestSRC")

follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
print(follic.obj)

plot.competing.risk(follic.obj)

B — oo
Hodgkin's Disease
B m o

data(hd, package = "randomForestSRC")

hd.obj <- rfsrc(Surv(time, status) ~ ., hd, nsplit = 3, ntree = 100)
print(hd.obj)

plot.competing.risk(hd.obj)

HH -
competing risk analysis of pbc data from the survival package
events are transplant (1) and death (2)

oo

if (library("”survival”, logical.return = TRUE)) {
data(pbc, package = "survival")
pbc$id <- NULL

plot.quantreg.rfsrc 41

plot.competing.risk(rfsrc(Surv(time, status) ~ ., pbc))

plot.quantreg.rfsrc Plot Quantiles from Quantile Regression Forests

Description

Plots quantiles obtained from a quantile regression forest. Additionally insets the continuous rank
probability score (crps), a useful diagnostic of accuracy.

Usage

S3 method for class 'rfsrc'
plot.quantreg(x, prbL = .25, prbU = .75,

m.target = NULL, crps = TRUE, subset = NULL, xlab = NULL, ylab = NULL, ...)
Arguments

X A quantile regression object returned by a call to quantreg.

prbL Lower quantile level, typically less than @. 5.

prbu Upper quantile level, typically greater than 0. 5.

m.target Character string specifying the target outcome for multivariate families. If not
provided, a default target is selected automatically.

crps Logical. If TRUE, calculates the continuous ranked probability score (CRPS) and
adds it to the plot.

subset Optional vector specifying a subset of the data to be plotted. Defaults to plotting
all data points.

x1lab Label for the x-axis.

ylab Label for the y-axis.

Additional arguments passed to or from other methods.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

quantreg.rfsrc

42 plot.rtsrc

plot.rfsrc Plot Error Rate and Variable Importance from a RF-SRC analysis

Description

Plot out-of-bag (OOB) error rates and variable importance (VIMP) from a RF-SRC analysis. This
is the default plot method for the package.

Usage

S3 method for class 'rfsrc'
plot(x, m.target = NULL,

plots.one.page = TRUE, sorted = TRUE, verbose = TRUE, ...)
Arguments
X An object of class (rfsrc, grow), or (rfsrc, predict).
m. target Character value for multivariate families specifying the target outcome to be

used. If left unspecified, the algorithm will choose a default target.
plots.one.page Should plots be placed on one page?
sorted Should variables be sorted by importance values?
verbose Should VIMP be printed?

Further arguments passed to or from other methods.

Details

Plot cumulative OOB error rates as a function of number of trees and variable importance (VIMP)
if available. Note that the default settings are now such that the error rate is no longer calculated
on every tree and VIMP is only calculated if requested. To get OOB error rates for ever tree, use
the option block.size = 1 when growing or restoring the forest. Likewise, to view VIMP, use the
option importance when growing or restoring the forest.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

plot.subsample.rfsrc

Examples
e
classification example
B m o
iris.obj <- rfsrc(Species ~ ., data = iris,

block.size = 1, importance = TRUE)
plot(iris.obj)

B — o
competing risk example
T e

use the pbc data from the survival package

events are transplant (1) and death (2)

if (library("”survival”, logical.return = TRUE)) {
data(pbc, package = "survival”)
pbc$id <- NULL

plot(rfsrc(Surv(time, status) ~ ., pbc, block.size = 1))
}
e
multivariate mixed forests
B oo

mtcars.new <- mtcars

mtcars.new$cyl <- factor(mtcars.new$cyl)

mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)

mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars.new, block.size = 1)
plot(mv.obj, m.target = "carb")

plot(mv.obj, m.target = "mpg")

plot(mv.obj, m.target "cyl™)

plot.subsample.rfsrc Plot Subsampled VIMP Confidence Intervals

Description

Plots VIMP (variable importance) confidence regions obtained from subsampling a forest.

Usage

S3 method for class 'rfsrc'

plot.subsample(x, alpha = .01, xvar.names,

standardize = TRUE, normal = TRUE, jknife = FALSE, target, m.target = NULL,
pmax = 75, main = "", sorted = TRUE, show.plots = TRUE, ...)

plot.subsample.rfsrc

Arguments
X An object obtained from calling subample.
alpha Desired level of significance.

Xvar.names

Names of the x-variables to be used. If not specified all variables used.

standardize Standardize VIMP? For regression families, VIMP is standardized by dividing
by the variance. For all other families, VIMP is unaltered.

normal Use parametric normal confidence regions or nonparametric regions? Generally,
parametric regions perform better.

jknife Use the delete-d jackknife variance estimator?

target For classification families, an integer or character value specifying the class
VIMP will be conditioned on (default is to use unconditional VIMP). For com-
peting risk families, an integer value between 1 and J indicating the event VIMP
is requested, where J is the number of event types. The default is to use the first
event.

m.target Character value for multivariate families specifying the target outcome to be
used. If left unspecified, the algorithm will choose a default target.

pmax Trims the data to this number of variables (sorted by VIMP).

main Title used for plot.

sorted Should variables be sorted by importance values?

show.plots Should plots be displayed? Allows users to produce their own custom plots.
Further arguments that can be passed to bxp.

Details

Most of the options used by the R function bxp will work here and can be used for customization
of plots. Currently the following parameters will work:

non non non non non non

"xaxt", "yaxt", "las", "cex.axis", "col.axis", "cex.main", "col.main", "sub", "cex.sub", "col.sub",
"ylab", "cex.lab", "col.lab"
Value

Invisibly, returns the boxplot data that is plotted.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References
Ishwaran H. and Lu M. (2017). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival.

Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under
minimal assumptions. The Annals of Statistics, 22(4):2031-2050.

Shao, J. and Wu, C.J. (1989). A general theory for jackknife variance estimation. The Annals of
Statistics, 17(3):1176-1197.

plot.survival.rfsrc

See Also

subsample.rfsrc

Examples

45

o <- rfsrc(Ozone ~ ., airquality)

00 <- subsample(o)

plot.subsample(oo0)

plot.subsample(oo, xvar.names = o$xvar.names[1:3])
plot.subsample(oo, jknife = FALSE)
plot.subsample(oo, alpha = .01)
plot(oo,cex.axis=.5)

plot.survival.rfsrc Plot of Survival Estimates

Description

Plot various survival estimates.

Usage

S3 method for class 'rfsrc'
plot.survival(x, show.plots = TRUE, subset,

collapse

Arguments

X
show.plots

subset

collapse

cens.model

FALSE, cens.model = c("km”, "rfsrc"), ...)

An object of class (rfsrc, grow) or (rfsrc, predict).
Should plots be displayed?

Vector indicating which cases from x we want estimates for. All cases used if
not specified.

Collapse the survival function?

Using the training data, specifies method for estimating the censoring distribu-
tion used in the inverse probability of censoring weights IPCW) for calculating
the Brier score:

km: Uses the Kaplan-Meier estimator.

rfscr: Uses a censoring random survival forest estimator.

Further arguments passed to or from other methods.

46 plot.survival.rfsrc

Details

Produces the following plots (going from top to bottom, left to right):

1. Forest estimated survival function for each individual (thick red line is overall ensemble sur-
vival, thick green line is Nelson-Aalen estimator).

2. Brier score (O=perfect, 1=poor, and 0.25=guessing) stratified by ensemble mortality. Based on
the IPCW method described in Gerds et al. (2006). Stratification is into 4 groups correspond-
ing to the 0-25, 25-50, 50-75 and 75-100 percentile values of mortality. Red line is overall
(non-stratified) Brier score.

3. Continuous rank probability score (CRPS) equal to the integrated Brier score divided by time.

4. Plot of mortality of each individual versus observed time. Points in blue correspond to events,
black points are censored observations. Not given for prediction settings lacking survival
response information.

Whenever possible, out-of-bag (OOB) values are used.

Only applies to survival families. In particular, fails for competing risk analyses. Use plot.competing.risk
in such cases.

Mortality (Ishwaran et al., 2008) represents estimated risk for an individual calibrated to the scale
of number of events (as a specific example, if i has a mortality value of 100, then if all individuals
had the same x-values as i, we would expect an average of 100 events).

The utility function get.brier.survival can be used to extract the Brier score among other useful
quantities.

Value

Invisibly, the conditional and unconditional Brier scores, and the integrated Brier score.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Gerds T.A and Schumacher M. (2006). Consistent estimation of the expected Brier score in general
survival models with right-censored event times, Biometrical J., 6:1029-1040.

Graf E., Schmoor C., Sauerbrei W. and Schumacher M. (1999). Assessment and comparison of
prognostic classification schemes for survival data, Statist. in Medicine, 18:2529-2545.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

See Also

plot.competing.risk.rfsrc, predict.rfsrc, rfsrc

plot.variable.rfsrc 47

Examples

veteran data

data(veteran, package = "randomForestSRC")

plot.survival(rfsrc(Surv(time, status)~ ., veteran), cens.model = "rfsrc")
pbc data

data(pbc, package = "randomForestSRC")

pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)

use subset to focus on specific individuals
plot.survival(pbc.obj, subset = 3)

plot.survival(pbc.obj, subset = c(3, 10))
plot.survival(pbc.obj, subset = c(3, 10), collapse = TRUE)

get.brier.survival function does many nice things!
plot(get.brier.survival(pbc.obj, cens.model="km")$brier.score,type="s", col=2)

lines(get.brier.survival(pbc.obj, cens.model="rfsrc")$brier.score, type="s", col=4)
legend("bottomright”, legend=c(”cens.model = km", "cens.model = rfsrc"), fill=c(2,4))

plot.variable.rfsrc Plot Marginal Effect of Variables

Description

Plot the marginal effect of an x-variable on the class probability (classification), response (regres-
sion), mortality (survival), or the expected years lost (competing risk). Users can select between
marginal (unadjusted, but fast) and partial plots (adjusted, but slower).

Usage

S3 method for class 'rfsrc'
plot.variable(x, xvar.names, target,
m.target = NULL, time, surv.type = c("mort”, "rel.freq",
"surv", "years.lost", "cif"”, "chf"), class.type =
c("prob”, "bayes"), partial = FALSE, oob = TRUE,
show.plots = TRUE, plots.per.page = 4, granule = 5, sorted = TRUE,

nvar, npts = 25, smooth.lines = FALSE, subset, ...)
Arguments
X Anobjectof class (rfsrc, grow), (rfsrc, synthetic), or (rfsrc, plot.variable).
xvar.names Character vector of x-variable names to include. If not specified, all variables
are used.
target For classification, an integer or character specifying the class of interest (default

is the first class). For competing risks, an integer between 1 and J indicating the
event of interest, where J is the number of event types. Default is the first event

type.

48 plot.variable.rfsrc

m.target Character value for multivariate families specifying the target outcome. If un-
specified, a default is automatically chosen.

time (Survival only) Time point at which the predicted survival value is evaluated,
depending on surv. type.

surv.type (Survival only) Type of predicted survival value to compute. See plot.variable
details.

class. type (Classification only) Type of predicted classification value to use. See plot.variable
details.

partial Logical. If TRUE, partial dependence plots are generated.

oob Logical. If TRUE, out-of-bag predictions are used; otherwise, in-bag predictions
are used.

show.plots Logical. If TRUE, plots are displayed on the screen.

plots.per.page Integer controlling the number of plots displayed per page.

granule Integer controlling the coercion of continuous variables to factors (used to gen-
erate boxplots). Larger values increase coercion.

sorted Logical. If TRUE, variables are sorted by variable importance.

nvar Number of variables to plot. Defaults to all available variables.

npts Maximum number of points used when generating partial plots for continuous
variables.

smooth.lines Logical. If TRUE, applies lowess smoothing to partial plots.

subset Vector indicating which rows of x$xvar to use. Defaults to all rows. Important:
do not define subset based on the original dataset (which may have been altered
due to missing data or other processing); define it relative to x$xvar.

Additional arguments passed to or from other methods.

Details

The vertical axis displays the ensemble-predicted value, while x-variables are plotted along the
horizontal axis.

1. For regression, the predicted response is plotted.

2. For classification, the plotted value is the predicted class probability for the class specified by
target, or the most probable class (Bayes rule) depending on whether class. type is set to
"prob” or "bayes”.

3. For multivariate families, the prediction corresponds to the outcome specified by m. target.
If this is a classification outcome, target may also be used to indicate the class of interest.

4. For survival, the vertical axis shows the predicted value determined by surv. type, with the
following options:

* mort: Mortality (Ishwaran et al., 2008), interpreted as the expected number of events for
an individual with the same covariates.
* rel.freq: Relative frequency of mortality.

e surv: Predicted survival probability at a specified time point (default is the median
follow-up time), controlled via time.

plot.variable.rfsrc 49

5. For competing risks, the vertical axis shows one of the following quantities, depending on
surv. type:

* years.lost: Expected number of life-years lost.
e cif: Cumulative incidence function for the specified event.
» chf: Cause-specific cumulative hazard function.

In all competing risks settings, the event of interest is specified using target, and cif and
chf are evaluated at the time point given by time.

To generate partial dependence plots, set partial = TRUE. These differ from marginal plots in that
they isolate the effect of a single variable X on the predicted value by averaging over all other
covariates:

where x; , denotes the observed values of all covariates other than X for individual 4, and f is the
prediction function. Generating partial plots can be computationally expensive; use a smaller value
for npts to reduce the number of grid points evaluated for z.

Plot display conventions:

* For continuous variables: red points indicate partial values; dashed red lines represent an
error band of two standard errors. Black dashed lines show the raw partial values. Use
smooth.lines = TRUE to overlay a lowess smoothed line.

* For discrete (factor) variables: boxplots are used, with whiskers extending approximately two
standard errors from the mean.

* Standard errors are provided only as rough indicators and should be interpreted cautiously.

Partial plots can be slow to compute. Setting npts to a small value can improve performance.

For additional flexibility and speed, consider using partial.rfsrc, which directly computes par-
tial plot data and allows for greater customization.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Friedman J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. of
Statist., 5:1189-1232.

Ishwaran H., Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

50 plot.variable.rfsrc

See Also

rfsrc, partial.rfsrc, predict.rfsrc

e e e
survival/competing risk
B m o

survival

data(veteran, package = "randomForestSRC")

v.obj <- rfsrc(Surv(time,status)~., veteran, ntree = 100)

plot.variable(v.obj, plots.per.page = 3)

plot.variable(v.obj, plots.per.page = 2, xvar.names = c("trt”, "karno”, "age"))
plot.variable(v.obj, surv.type = "surv"”, nvar = 1, time = 200)

plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE)
plot.variable(v.obj, surv.type = "rel.freq", partial = TRUE, nvar = 2)

example of plot.variable calling a pre-processed plot.variable object

p.v <- plot.variable(v.obj, surv.type = "surv"”, partial = TRUE, smooth.lines = TRUE)
plot.variable(p.v)

p.v$plots.per.page <- 1

p.v$smooth.lines <- FALSE

plot.variable(p.v)

example using a pre-processed plot.variable to define custom plots

p.v <- plot.variable(v.obj, surv.type = "surv”, partial = TRUE, show.plots = FALSE)
plotthis <- p.v$plotthis

plot(plotthis[["age"]], xlab = "age", ylab = "partial effect”, type = "b")
boxplot(yhat ~ x, plotthis[["trt”]], xlab = "treatment”, ylab = "partial effect”)

competing risks

data(follic, package = "randomForestSRC")

follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot.variable(follic.obj, target = 2)

————m o
regression
o

airquality

airqg.obj <- rfsrc(Ozone ~ ., data = airquality)

plot.variable(airqg.obj, partial = TRUE, smooth.lines = TRUE)
plot.variable(airqg.obj, partial = TRUE, subset = airq.obj$xvar$Solar.R < 200)

motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
plot.variable(mtcars.obj, partial = TRUE, smooth.lines = TRUE)

B oo
classification

predict.rfsrc 51

iris
iris.obj <- rfsrc(Species ~., data = iris)
plot.variable(iris.obj, partial = TRUE)

motor trend cars: predict number of carburetors
mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb,

labels = paste(”carb”, sort(unique(mtcars$carb))))
mtcars2.obj <- rfsrc(carb ~ ., data = mtcars2)
plot.variable(mtcars2.obj, partial = TRUE)

B oo o

multivariate regression
e G e e e
mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
plot.variable(mtcars.mreg, m.target = "mpg", partial = TRUE, nvar = 1)

plot.variable(mtcars.mreg, m.target = "cyl”, partial = TRUE, nvar = 1)

#H# -

multivariate mixed outcomes

-

mtcars2 <- mtcars

mtcars2$carb <- factor(mtcars2$carb)

mtcars2$cyl <- factor(mtcars2$cyl)

mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)
plot.variable(mtcars.mix, m.target = "cyl”, target = "4", partial = TRUE, nvar = 1)
plot.variable(mtcars.mix, m.target = "cyl”, target = 2, partial = TRUE, nvar = 1)

predict.rfsrc Prediction for Random Forests for Survival, Regression, and Classifi-
cation

Description

Obtain predicted values using a forest. Also returns performance values if the test data contains

y-outcomes.
Usage
S3 method for class 'rfsrc'
predict(object,
newdata,
importance = c(FALSE, TRUE, "none”, "anti"”, "permute”, "random"),

get.tree = NULL,

52 predict.rfsrc
block.size if (any(is.element(as.character(importance),
c("none”, "FALSE")))) NULL else 10,
na.action = c("na.omit”, "na.impute”, "na.random”),
outcome = c("train", "test"),
perf.type = NULL,
proximity = FALSE,
forest.wt = FALSE,
ptn.count = 0,
distance = FALSE,
var.used = c(FALSE, "all.trees”, "by.tree"),
split.depth = c(FALSE, "all.trees"”, "by.tree"),
case.depth = FALSE,
seed = NULL,
do.trace = FALSE, membership = FALSE,
marginal.xvar = NULL, ...)
Arguments
object An object of class (rfsrc, grow) or (rfsrc, forest).
newdata Test data. If omitted, the original training data is used.
importance Method for computing variable importance (VIMP). See vimp for additional
options including joint importance. See holdout.vimp for an alternative im-
portance measure.
get.tree Vector of integers specifying which trees to use for ensemble calculations. De-
faults to all trees. Useful for extracting ensembles, VIMP, or proximity from
specific trees. If specified, block.size is overridden to match the number of
trees. See examples for per-tree VIMP extraction.
block.size Controls the granularity of error rate and VIMP calculation. If NULL, error is
reported only for the final tree. Set to an integer k to compute error every k
trees. For VIMP, calculations are done in blocks of size block. size, balancing
between tree-level and forest-level assessments.
na.action Action to take when missing values are present. Options are "na.omit” (de-
fault), "na.random” for fast random imputation, or "na.impute” to use the
imputation method in rfsrc.
outcome Specifies whether predicted values should be based on the outcomes from the
training data ("train”, default) or test data. Ignored if newdata is missing or if
test outcomes are unavailable.
perf.type Optional metric for prediction, VIMP, and error. Currently used for classifica-
tion and multivariate classification. Choices: "misclass” (default), "brier”,
and "gmean”.
proximity Whether to compute the proximity matrix for test observations. Options include
"inbag", "oob", "all", TRUE, or FALSE. Not all options are valid in all contexts;
TRUE is the safest choice.
distance Whether to compute the distance matrix. Options are the same as for proximity.
forest.wt Whether to compute the forest weight matrix. Options are the same as for

proximity.

predict.rfsrc 53

ptn.count If nonzero, each tree is pruned to have this many terminal nodes. Only the termi-
nal node membership is returned; no prediction is made. Default is ptn.count
= 0.

var.used If TRUE, records how many times each variable was used for splitting.

split.depth If TRUE, returns minimal depth of each variable per case.

case.depth If TRUE, returns a matrix of the depth at which each case first splits in each tree.

seed Negative integer used to set the random seed.

do.trace Number of seconds between progress updates during execution.

membership If TRUE, returns terminal node membership and in-bag information.

marginal.xvar Vector of variable names to marginalize over when calculating weights or prox-
imity. If a variable is marginalized, its split does not partition the data; all cases
are passed to both daughters. When all splits involve marginalized variables, ter-
minal nodes contain the full dataset. When no marginalized variables are used,
membership is unchanged. Default is NULL (no marginalization).

Additional arguments passed to or from other methods.

Details

Predicted values are obtained by "dropping" the test data down the trained forest-i.e., the forest
grown using the training data. If the test data includes y-outcome values, performance metrics are
also returned. Variable importance (VIMP), including joint VIMP, is returned if requested.

If no test data is supplied, the function uses the original training data and enters "restore" mode. This
allows users to extract outputs from the trained forest that were not requested during the original
grow call.

If outcome = "test”, predictions are computed using y-outcomes from the test data (which must
include outcome values). Terminal node statistics are recalculated using these outcomes, while the
tree topology remains fixed from training. Error rates and VIMP are then computed by bootstrap-
ping the test set and applying out-of-bagging to maintain unbiased estimates.

Set csv = TRUE to return case-specific VIMP, and cse = TRUE to return case-specific error rates.
These apply to all families except survival. Both options can also be used at training time.

Value

An object of class (rfsrc, predict), which is a list with the following components:

call The original grow call to rfsrc.

family The family used in the analysis.

n Sample size of the test data (after handling missing values).

ntree Number of trees in the trained forest.

yvar Y-outcome values from the test data or original grow data (if newdata is missing).
yvar.names Character vector of response variable names.

xvar Data frame of test set predictor variables.

xvar.names Character vector of predictor variable names.

54

predict.rfsrc

leaf.count Vector of length ntree giving the number of terminal nodes per tree.

proximity Proximity matrix computed on the test data.

forest The trained forest object.

forest.wt Forest weight matrix for test cases.

ptn.membership Matrix of pruned terminal node membership. Only returned if ptn.count > @.

membership Matrix of terminal node membership for test cases. Each column corresponds to one
tree.

inbag Matrix indicating how many times each case appears in the bootstrap sample for each tree.
var.used Number of times each variable was used in splitting.
imputed.indv Indices of test observations with missing values.

imputed.data Imputed version of the test data. Columns are ordered with responses first, followed
by predictors.

split.depth Matrix or array recording minimal depth of each variable for each case, optionally by
tree.

err.rate Cumulative out-of-bag (OOB) error rate, if y-outcomes are present.

importance Variable importance (VIMP) for the test data. May be NULL.

predicted Predicted values for the test data.

predicted.oob OOB predicted values. May be NULL depending on context.

quantile Estimated quantile values at the requested probabilities (quantile regression only).
quantile.oob OOB quantile values. May be NULL.

class (Classification only) Predicted class labels.

class.oob (Classification only) OOB predicted class labels.

regrOutput (Multivariate only) List of performance measures for multivariate regression out-
comes.

clasOutput (Multivariate only) List of performance measures for multivariate categorical out-
comes.

chf (Survival or competing risks) Cumulative hazard function (CHF).

chf.oob (Survival or competing risks) OOB CHF. May be NULL.

survival (Survival only) Survival function estimates.

survival.oob (Survival only) OOB survival function. May be NULL.

time.interest (Survival or competing risks) Sorted unique event times.

ndead (Survival or competing risks) Number of deaths observed.

cif (Competing risks only) Cumulative incidence function (CIF) for each event type.
cif.oob (Competing risks only) OOB CIF. May be NULL.

chf (Competing risks only) Cause-specific cumulative hazard function (CSCHF).
chf.oob (Competing risks only) OOB CSCHF. May be NULL.

predict.rfsrc 55

Note

The dimensions and contents of returned objects depend on the forest family and whether y-
outcomes are available in the test data. In particular, performance-related components (e.g., error
rate, VIMP) will be NULL if y-outcomes are missing.

For multivariate families, predicted values, VIMP, error rates, and performance metrics are stored in
the lists regrOutput and clasOutput. These can be accessed using the helper functions get.mv.predicted,
get.mv.vimp, and get.mv.error.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

See Also

holdout.vimp.rfsrc, plot.competing.risk.rfsrc,plot.rfsrc,plot.survival.rfsrc,plot.variable.rfsrc,
rfsrc, rfsrc.fast, vimp.rfsrc

Examples
T
typical train/testing scenario
e
data(veteran, package = "randomForestSRC")
train <- sample(1:nrow(veteran), round(nrow(veteran) * 0.80))
veteran.grow <- rfsrc(Surv(time, status) ~ ., veteran[train, 1)

veteran.pred <- predict(veteran.grow, veteran[-train, 1)
print(veteran.grow)
print(veteran.pred)

e SR
restore mode

- if predict is called without specifying the test data

the original training data is used and the forest is restored

first train the forest
airg.obj <- rfsrc(Ozone ~ ., data = airquality)

now we restore it and compare it to the original call
they are identical
predict(airqg.obj)

56

print(airq.obj)

we can retrieve various outputs that were not asked for in
in the original call

here we extract the proximity matrix
prox <- predict(airg.obj, proximity = TRUE)$proximity
print(prox[1:10,1:101)

here we extract the number of times a variable was used to grow
the grow forest

var.used <- predict(airg.obj, var.used = "by.tree")$var.used
print(head(var.used))

B oo oo
prediction when test data has missing values
B o

data(pbc, package = "randomForestSRC")
trn <- pbc[1:312,]

tst <- pbc[-(1:312),]

o <- rfsrc(Surv(days, status) ~ ., trn)

default imputation method used by rfsrc
print(predict(o, tst, na.action = "na.impute”))

random imputation
print(predict(o, tst, na.action = "na.random”))

e
requesting different performance for classification
HHE m o

default performance is misclassification
o <- rfsrc(Species~., iris)
print(o)

get (normalized) brier performance
print(predict(o, perf.type = "brier"))

B oo
vimp for each tree: illustrates get.tree
B — oo

regression analysis but no VIMP
o <- rfsrc(mpg~., mtcars)

now extract VIMP for each tree using get.tree
vimp.tree <- do.call(rbind, lapply(1:o0$ntree, function(b) {
predict(o, get.tree = b, importance = TRUE)$importance

m

boxplot of tree VIMP

predict.rfsrc

predict.rfsrc 57

boxplot(vimp.tree, outline = FALSE, col = "cyan")
abline(h = @, 1ty = 2, col = "red")

summary information of tree VIMP
print(summary(vimp.tree))

extract tree-averaged VIMP using importance=TRUE
remember to set block.size to 1
print(predict(o, importance = TRUE, block.size = 1)$importance)

use direct call to vimp() for tree-averaged VIMP
print(vimp(o, block.size = 1)$importance)

#H -
vimp for just a few trees

illustrates how to get vimp if you have a large data set

B o

survival analysis but no VIMP
data(pbc, package = "randomForestSRC")
o <- rfsrc(Surv(days, status) ~ ., pbc, ntree = 2000)

get vimp for a small number of trees
print(predict(o, get.tree=1:250, importance = TRUE)$importance)

HH m o
case-specific vimp

returns VIMP for each case

B m o

o <- rfsrc(mpg~., mtcars)

op <- predict(o, importance = TRUE, csv = TRUE)
csvimp <- get.mv.csvimp(op, standardize=TRUE)
print(csvimp)

- e
case-specific error rate

returns tree-averaged error rate for each case

- e

o <- rfsrc(mpg~., mtcars)

op <- predict(o, importance = TRUE, cse = TRUE)
cserror <- get.mv.cserror(op, standardize=TRUE)
print(cserror)

B oo
predicted probability and predicted class labels are returned
in the predict object for classification analyses

B o

data(breast, package = "randomForestSRC")

58

predict.rfsrc

breast.obj <- rfsrc(status ~ ., data = breast[(1:100), 1)
breast.pred <- predict(breast.obj, breast[-(1:100), 1)
print(head(breast.pred$predicted))
print(breast.pred$class)

#H -
unique feature of randomForestSRC

cross-validation can be used when factor labels differ over
training and test data

#H -

first we convert all x-variables to factors
data(veteran, package = "randomForestSRC")
veteran2 <- data.frame(lapply(veteran, factor))
veteran2$time <- veteran$time

veteran2$status <- veteran$status

split the data into unbalanced train/test data (25/75)

the train/test data have the same levels, but different labels
train <- sample(1:nrow(veteran2), round(nrow(veteran2) * .25))
summary (veteran2[train,])

summary (veteran2[-train,])

train the forest and use this to predict on test data
o.grow <- rfsrc(Surv(time, status) ~ ., veteran2[train, 1)
o.pred <- predict(o.grow, veteran2[-train , 1)
print(o.grow)

print(o.pred)

even harder ... factor level not previously encountered in training
veteran3 <- veteran2[1:3,]

veteran3$celltype <- factor(c(”"newlevel”, "1", "3"))

02.pred <- predict(o.grow, veteran3)

print(o2.pred)

the unusual level is treated like a missing value but is not removed
print(o2.pred$xvar)

B m o
example illustrating the flexibility of outcome = "test”

illustrates restoration of forest via outcome = "test”

B m o

first we train the forest
data(pbc, package = "randomForestSRC")
pbc.grow <- rfsrc(Surv(days, status) ~ ., pbc)

use predict with outcome = TEST
pbc.pred <- predict(pbc.grow, pbc, outcome = "test")

notice that error rates are the same!!
print(pbc.grow)
print(pbc.pred)

predict.rfsrc

note this is equivalent to restoring the forest
pbc.pred2 <- predict(pbc.grow)

print(pbc.grow)

print(pbc.pred)

print(pbc.pred2)

similar example, but with na.action = "na.impute”

airqg.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute"”)
print(airg.obj)

print(predict(airqg.obj))

... also equivalent to outcome="test” but na.action = "na.impute” required

print(predict(airqg.obj, airquality, outcome = "test”, na.action = "na.impute”))

classification example

iris.obj <- rfsrc(Species ~., data = iris)

print(iris.obj)

print(predict.rfsrc(iris.obj, iris, outcome = "test"))

B o
another example illustrating outcome = "test”

unique way to check reproducibility of the forest

#H -

training step

set.seed(542899)

data(pbc, package = "randomForestSRC")

train <- sample(1:nrow(pbc), round(nrow(pbc) * 0.50))
pbc.out <- rfsrc(Surv(days, status) ~ ., data=pbc[train, 1)

standard prediction call

pbc.train <- predict(pbc.out, pbc[-train,], outcome = "train")
##non-standard predict call: overlays the test data on the grow forest
pbc.test <- predict(pbc.out, pbc[-train,], outcome = "test")

check forest reproducibilility by comparing "test” predicted survival

curves to "train"” predicted survival curves for the first 3 individuals
Time <- pbc.out$time.interest

matplot(Time, t(pbc.train$survival[1:3,]1), ylab = "Survival”, col = 1, type =
matlines(Time, t(pbc.test$survivall[1:3,]), col = 2)

B oo
multivariate forest example
B = m o mmmme

train the forest
trn <- 1:20
o <- rfsrc(cbind(mpg, disp)~.,mtcars[trn,])

print training results for each outcome
print(o, outcome.target="mpg")
print(o, outcome.target="disp")

"y

59

60 print.rfsrc

print test results for each outcome
p <- predict(o, mtcars[-trn,])
print(p, outcome.target="mpg")
print(p, outcome.target="disp")

print.rfsrc Print Summary Output of a RF-SRC Analysis

Description

Print summary output from a RF-SRC analysis. This is the default print method for the package.

Usage
S3 method for class 'rfsrc'
print(x, outcome.target = NULL, ...)
Arguments
X An object of class (rfsrc, grow), or (rfsrc, predict).

outcome.target Character value for multivariate families specifying the target outcome to be
used. The default is to use the first coordinate from the continuous outcomes
(otherwise if none, the first coordinate from the categorical outcomes).

Further arguments passed to or from other methods.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7/2:25-31.

Examples

options(rf.cores=2, mc.cores=2)
iris.obj <- rfsrc(Species ~., data = iris, ntree=10)
print(iris.obj)

quantreg.rfsrc 61

quantreg.rfsrc Quantile Regression Forests

Description
Grows a univariate or multivariate quantile regression forest and returns its conditional quantile and
density values. Can be used for both training and testing purposes.

Usage

S3 method for class 'rfsrc'
quantreg(formula, data, object, newdata,
method = "local"”, splitrule = NULL, prob = NULL, prob.epsilon = NULL,

oob = TRUE, fast = FALSE, maxn = 1e3, ...)
Arguments

formula A symbolic description of the model to be fit. Must be specified unless object
is given.

data Data frame containing the y-outcome and x-variables in the model. Must be
specified unless object is given.

object (Optional) A previously grown quantile regression forest.

newdata (Optional) Test data frame used for prediction. Note that prediction on test data

must always be done with the quantreg function and not the predict function.
See example below.

method Method used to calculate quantiles. Three methods are provided: (1) A varia-
tion of the method used in Meinshausen (2006) based on forest weight (method
="forest"); (2) The Greenwald-Khanna algorithm, suited for big data, and
specified by any one of the following: "gk", "GK", "G-K", "g-k"; (3) The de-
fault method, method = "local”, which uses the local adjusted cdf approach of
Zhang et al. (2019). This does not rely on forest weights and is reasonably fast.
See below for further discussion.

splitrule The default action is local adaptive quantile regression splitting, but this can
be over-ridden by the user. Not applicable to multivariate forests. See details
below.

prob Target quantile probabilities when training. If left unspecified, uses percentiles

(1 through 99) for method = "forest”, and for Greenwald-Khanna selects equally
spaced percentiles optimized for accuracy (see below).

prob.epsilon Greenwald-Khanna allowable error for quantile probabilities when training.

oob Return OOB (out-of-bag) quantiles? If false, in-bag values are returned.

fast Use fast random forests, rfsrc.fast, in place of rfsrc? Improves speed but
may be less accurate.

maxn Maximum number of unique y training values used when calculating the condi-
tional density.
Further arguments to be passed to the rfsrc function used for fitting the quantile
regression forest.

62 quantreg.rtsrc

Details

The most common method for calculating RF quantiles uses the method described in Meinshausen
(2006) using forest weights. The forest weights method employed here (specified using method="forest"),
however differs in that quantiles are estimated using a weighted local cumulative distribution func-

tion estimator. For this reason, results may differ from Meinshausen (2006). Moreover, results may

also differ as the default splitting rule uses local adaptive quantile regression splitting instead of
CART regression mean squared splitting which was used by Meinshausen (2006). Note that local
adaptive quantile regression splitting is not available for multivariate forests which reverts to the
default multivariate composite splitting rule. In multivariate regression, users however do have the
option to over-ride this using Mahalanobis splitting by setting splitrule="mahalanobis”

A second method for estimating quantiles uses the Greenwald-Khanna (2001) algorithm (invoked
by method="gk", "GK", "G-K" or "g-k"). While this will not be as accurate as forest weights, the
high memory efficiency of Greenwald-Khanna makes it feasible to implement in big data settings
unlike forest weights.

The Greenwald-Khanna algorithm is implemented roughly as follows. To form a distribution of
values for each case, from which we sample to determine quantiles, we create a chain of values
for the case as we grow the forest. Every time a case lands in a terminal node, we insert all of its
co-inhabitants to its chain of values.

The best case scenario is when tree node size is 1 because each case gets only one insert into its
chain for that tree. The worst case scenario is when node size is so large that trees stump. This is
because each case receives insertions for the entire in-bag population.

What the user needs to know is that Greenwald-Khanna can become slow in counter-intutive settings
such as when node size is large. The easy fix is to change the epsilon quantile approximation that
is requested. You will see a significant speed-up just by doubling prob.epsilon. This is because
the chains stay a lot smaller as epsilon increases, which is exactly what you want when node sizes
are large. Both time and space requirements for the algorithm are affected by epsilon.

The best results for Greenwald-Khanna come from setting the number of quantiles equal to 2 times
the sample size and epsilon to 1 over 2 times the sample size which is the default values used if left
unspecified. This will be slow, especially for big data, and less stringent choices should be used if
computational speed is of concern.

Finally, the default method, method="local", implements the locally adjusted cdf estimator of Zhang
et al. (2019). This does not use forest weights and is reasonably fast and can be used for large
data. However, this relies on the assumption of homogeneity of the error distribution, i.e. that
errors are iid and therefore have equal variance. While this is reasonably robust to departures of
homogeneity, there are instances where this may perform poorly; see Zhang et al. (2019) for details.
If hetereogeneity is suspected we recommend method="forest".

Value

Returns the object quantreg containing quantiles for each of the requested probabilities (which
can be conveniently extracted using get.quantile). Also contains the conditional density (and
conditional cdf) for each case in the training data (or test data if provided) evaluated at each of the
unique grow y-values. The conditional density can be used to calculate conditional moments, such
as the mean and standard deviation. Use get.quantile.stat as a way to conveniently obtain these
quantities.

quantreg.rfsrc 63

For multivariate forests, returned values will be a list of length equal to the number of target out-
comes.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries.
Proceedings of ACM SIGMOD, 30(2):58-66.

Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-
999.

Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction inter-
vals. The American Statistician. 4:1-5.

See Also

rfsrc

Examples

et
regression example
B m o

standard call
0 <- quantreg(mpg ~ ., mtcars)

extract conditional quantiles
print(get.quantile(o))
print(get.quantile(o, c(.25, .50, .75)))

extract conditional mean and standard deviation
print(get.quantile.stat (o))

standardized continuous rank probabiliy score (crps) performance
plot(get.quantile.crps(o), type = "1")

B oo
train/test regression example
B m o

train (grow) call followed by test call
o <- quantreg(mpg ~ ., mtcars[1:20,])
o.tst <- quantreg(object = o, newdata = mtcars[-(1:20),])

extract test set quantiles and conditional statistics
print(get.quantile(o.tst))
print(get.quantile.stat(o.tst))

64

B oo o
quantile regression for Boston Housing using forest method
e Tt

if (library("mlbench”, logical.return = TRUE)) {

quantile regression with mse splitting
data(BostonHousing)
0 <- quantreg(medv ~ ., BostonHousing, method = "forest”, nodesize

standardized continuous rank probabiliy score (crps)
plot(get.quantile.crps(o), type = "1")

quantile regression plot
plot.quantreg(o, .05, .95)
plot.quantreg(o, .25, .75)

(A) extract 25,50,75 quantiles
quant.dat <- get.quantile(o, c(.25, .50, .75))

(B) values expected under normality
quant.stat <- get.quantile.stat(o)
c.mean <- quant.stat$mean

c.std <- quant.stat$std

q.25.est <- c.mean + gnorm(.25) * c.std
g.75.est <- c.mean + gnorm(.75) * c.std

compare (A) and (B)
print(head(data.frame(quant.dat[, -2], q.25.est, g.75.est)))

e
multivariate mixed outcomes example

quantiles are only returned for the continous outcomes

B m o

dta <- mtcars

dtascyl <- factor(dtas$cyl)

dta$carb <- factor(dta$carb, ordered = TRUE)

o <- quantreg(cbind(carb, mpg, cyl, disp) ~., data = dta)

plot.quantreg(o, m.target = "mpg")
plot.quantreg(o, m.target = "disp")

B — oo
multivariate regression example using Mahalanobis splitting
B m o

dta <- mtcars

D)

quantreg.rtsrc

quantreg.rfsrc

o <- quantreg(cbind(mpg, disp) ~., data = dta, splitrule = "mahal")

plot.quantreg(o, m.target = "mpg")
plot.quantreg(o, m.target = "disp")

T
example of quantile regression for ordinal data
e

use the wine data for illustration
data(wine, package = "randomForestSRC")

run quantile regression
o <- quantreg(quality ~ ., wine, ntree = 100)

extract "probabilities” = density values
go.dens <- o$quantreg$density

yung <- o$quantreg$yunq

colnames(qgo.dens) <- yunq

convert y to a factor
yvar <- factor(cut(o$yvar, c(-1, yunqg), labels = yunq))

confusion matrix
go.confusion <- get.confusion(yvar, qgo.dens)

print(qo.confusion)

normalized Brier score

cat("Brier:", 100 * get.brier.error(yvar, qgo.dens), "\n")
B o
example of large data using Greenwald-Khanna algorithm
H m o

load the data and do quick and dirty imputation
data(housing, package = "randomForestSRC")
housing <- impute(SalePrice ~ ., housing,

ntree = 50, nimpute = 1, splitrule = "random")

Greenwald-Khanna algorithm
request a small number of quantiles
o <- quantreg(SalePrice ~ ., housing, method = "gk",
prob = (1:20) / 20, prob.epsilon = 1 / 20, ntree = 250)
plot.quantreg(o)

B m o
using mse splitting with local cdf method for large data
B — oo

load the data and do quick and dirty imputation
data(housing, package = "randomForestSRC")
housing <- impute(SalePrice ~ ., housing,

66 rfsrc
ntree = 50, nimpute = 1, splitrule = "random")
use mse splitting and reduce number of trees
o <- quantreg(SalePrice ~ ., housing, splitrule = "mse”, ntree = 250)
plot.quantreg(o)
rfsrc Fast Unified Random Forests for Survival, Regression, and Classifica-

tion (RF-SRC)

Description

Fast OpenMP-parallel implementation of random forests (Breiman, 2001) for regression, classifica-
tion, survival analysis (Ishwaran et al., 2008), competing risks (Ishwaran et al., 2012), multivariate
outcomes (Segal and Xiao, 2011), unsupervised learning (Mantero and Ishwaran, 2020), quantile
regression (Meinshausen, 2006; Zhang et al., 2019; Greenwald and Khanna, 2001), and imbalanced
g-classification (O’Brien and Ishwaran, 2019).

The package supports both deterministic and randomized splitting rules (Geurts et al., 2006; Ish-
waran, 2015) across all families. Multiple types of variable importance (VIMP) are available, in-
cluding holdout VIMP and confidence regions (Ishwaran and Lu, 2019), for both individual and
grouped variables. Variable selection can be performed using minimal depth (Ishwaran et al., 2010,
2011). Fast interfaces for missing data imputation are provided using several forest-based algo-
rithms (Tang and Ishwaran, 2017).

Highlighted updates:

1. For variable selection, we recommend using VarPro, an R package for model-independent
variable selection using rule-based variable priority. It supports regression, classification,
survival analysis, and includes a new mode for unsupervised learning. See https://www.
varprotools.org for more information.

2. For computational speed, the default VIMP method has changed from "permute" (Breiman-
Cutler permutation) to "anti" (importance = "anti” or importance = TRUE). While faster,
this may be less accurate in settings such as highly imbalanced classification. To revert to
permutation VIMP, use importance = "permute”.

This is the main entry point to the randomForestSRC package. For more information on OpenMP
support and the package as a whole, see package?randomForestSRC.

Usage

rfsrc(formula, data, ntree = 500,
mtry = NULL, ytry = NULL,
nodesize = NULL, nodedepth = NULL,
splitrule = NULL, nsplit = NULL,
importance = c(FALSE, TRUE, "none”, "anti"”, "permute”, "random"),

https://www.varprotools.org
https://www.varprotools.org

rfsrc 67
block.size = if (any(is.element(as.character(importance),
c("none”, "FALSE")))) NULL else 10,
bootstrap = c("by.root”, "none"”, "by.user"),
samptype = c("swor"”, "swr"), samp = NULL, membership = FALSE,
sampsize = if (samptype == "swor"”) function(x){x * .632} else function(x){x},
na.action = c("na.omit”, "na.impute”), nimpute = 1,
ntime = 150, cause,
perf.type = NULL,
proximity = FALSE, distance = FALSE, forest.wt = FALSE,
xvar.wt = NULL, yvar.wt = NULL, split.wt = NULL, case.wt = NULL,
case.depth = FALSE,
forest = TRUE,
save.memory = FALSE,
var.used = c(FALSE, "all.trees"”, "by.tree"),
split.depth = c(FALSE, "all.trees"”, "by.tree"),
seed = NULL,
do.trace = FALSE,
)
convenient interface for growing a CART tree
rfsrc.cart(formula, data, ntree = 1, mtry = ncol(data), bootstrap = "none”, ...)
Arguments
formula A formula describing the model to fit. Interaction terms are not supported. If
missing, unsupervised splitting is used.
data Data frame containing the response and predictor variables.
ntree Number of trees to grow.
mtry Number of candidate variables randomly selected at each split. Defaults: regres-
sion uses p/3, others use sqrt(p); rounded up.
ytry Number of pseudo-response variables randomly selected for unsupervised split-
ting. Defaultis 1.
nodesize Minimum terminal node size. Defaults: survival/competing risks (15), regres-
sion (9), classification (1), mixed/unsupervised (3).
nodedepth Maximum tree depth. Ignored by default.
splitrule Splitting rule. See Details.
nsplit Number of random split points per variable. @ uses all values (deterministic).

Default is 10.
importance Variable importance (VIMP) method. Choices: FALSE, TRUE, "none”, "anti”,

n o on

"permute”, "random”. Default is "none”. VIMP can be computed later using
vimp or predict.

block.size Controls frequency of cumulative error/VIMP updates. Default is 10 if impor-

tance is requested; otherwise NULL. See Details.

bootstrap Bootstrap method. Options: "by.root" (default), "by.user”, or "none” (no

OOB error possible).

68

samptype

samp

membership

sampsize

na.action

nimpute

ntime

cause

perf.type

proximity

distance

forest.wt

xvar.wt

yvar.wt

split.wt

case.wt

case.depth
forest

save.memory

var.used

split.depth

seed

do.trace

rfsrc

Sampling type for by.root bootstrap. Options: "swor"” (without replacement,
default), "swr" (with replacement).

Bootstrap weights (only for bootstrap="by.user"). A matrix of size n x ntree
giving in-bag counts per tree.

Return inbag and terminal node membership?

Bootstrap sample size (used when bootstrap="by.root"). Defaults: 0.632 x
n for swor; n for swr. Can also be numeric.

Missing data handling. "na.omit"” (default) removes rows with any NA; "na. impute

performs fast internal imputation. See also impute.

Number of iterations for internal imputation. If >1, OOB error rates may be
optimistic.

For survival models: number or grid of time points used in ensemble estimation.
If NULL or 9, uses all event times.

For competing risks: event of interest (1 to J), or a vector of weights over all J
events. Defaults to an average over all events.

Optional performance metric for prediction, VIMP, and error. Defaults to the
family-specific metric. "none"” disables performance. See Details.

Compute proximity matrix? Options: "inbag"”, "oob"”, "all"”, TRUE (inbag), or
FALSE.

Compute pairwise distances between cases? Similar options as proximity. See
Details.

Return forest weight matrix? Same options as proximity. Default is TRUE
(inbag).

Optional weights on x-variables for sampling at splits. Does not need to sum to
1. Defaults to uniform.

Weights on response variables (for multivariate regression). Used when y is
high-dimensional.

Weights applied to each variable’s split statistic. Higher weight increases likeli-
hood of splitting.

Sampling weights for cases in the bootstrap. Higher values increase selection
probability. See class imbalance example.

Return matrix recording depth of first split for each case? Default is FALSE.
Save forest object for future prediction? Set FALSE if prediction is not needed.

Reduce memory usage by avoiding storage of prediction quantities. Recom-
mended for large survival or competing risk forests.

Return variable usage statistics? Options: FALSE, "all.trees”, "by.tree".

Return minimal depth of splits for each variable? Options: FALSE, "all. trees”,
"by.tree". See Details.

Integer seed for reproducibility (negative values only).
Print progress updates every do. trace seconds.

Additional arguments passed to or from other methods.

rfsrc 69

Details

1. Types of forests
The type of forest is automatically inferred from the outcome and formula. Supported forest
types include:
* Regression forests for continuous outcomes.
* Classification forests for factor outcomes.
* Multivariate forests for continuous, categorical, or mixed outcomes.
» Unsupervised forests when no outcome is specified.
* Survival forests for right-censored time-to-event data.
» Competing risk forests for multi-event survival settings.
2. Splitting
(a) Splitting rules are set using the splitrule option.
(b) Random splitting is invoked via splitrule = "random".
(c) Use nsplit to enable randomized splitting and improve speed; see Improving computa-
tional speed.

3. Available splitting rules

* Regression
(a) "mse" (default): weighted mean squared error (Breiman et al., 1984).
(b) "quantile.regr": quantile regression via check-loss; see quantreg.rfsrc.
(c) "la.quantile.regr": local adaptive quantile regression.
¢ Classification
(a) "gini" (default): Gini index.
(b) "auc": AUC-based splitting; appropriate for imbalanced data.
(c) "entropy": entropy-based splitting.
* Survival
(a) "logrank" (default): log-rank splitting.
(b) "bs.gradient”: Brier score gradient splitting. Uses 90th percentile of observed
times by default, or set prob.
(c) "logrankscore": log-rank score splitting.
* Competing risks (see Ishwaran et al., 2014)
(a) "logrankCR" (default): Gray’s test-based weighted log-rank splitting.
(b) "logrank": cause-specific weighted log-rank; use cause to target specific events.
e Multivariate
(a) Default: normalized composite splitting (Tang and Ishwaran, 2017).
(b) "mahalanobis"”: Mahalanobis splitting with optional covariance matrix; for multi-
variate regression.
* Unsupervised Splitting uses pseudo-outcomes and the composite rule. See sidClustering
for advanced unsupervised analysis.
¢ Custom splitting Custom rules can be defined using splitCustom.c. Up to 16 rules per

non

family are allowed. Use "custom”, "custom1”, etc. Compilation required.

4. Improving computational speed
See rfsrc.fast. Strategies include:

rfsrc

* Increase nodesize.

» Set save.memory = TRUE for large survival or competing risk models.

» Setblock.size = NULL to avoid repeated cumulative error computation.
e Use perf.type = "none” to disable VIMP and C-index calculations.

e Setnsplit to a small integer (e.g., 1-10).

* Reduce bootstrap size with sampsize, samptype.

e Set ntime to a coarse grid (e.g., 50) for survival models.

e Pre-filter variables; use max. subtree for fast variable selection.

. Prediction Error
Error is computed using OOB data:
* Regression: mean squared error.
¢ (Classification: misclassification rate, Brier score, AUC.
e Survival: C-error = 1 - Harrell’s concordance index.
If bootstrap = "none”, OOB error is unavailable. Use predict.rfsrc for cross-validation
error instead.
. Variable Importance (VIMP)
VIMP methods:

e "permute”: permutation VIMP (Breiman-Cutler).
* "random”: randomized left/right assignment.
e "anti"” (default): anti-split assignment.

The block. size option controls granularity. For confidence intervals, see subsampling. Also
see holdout.vimp for a more conservative variant.

. Multivariate Forests

Use:

rfsrc(Multivar(yl, ..., yd) ~ ., data)
or

rfsrc(cbind(yl, ..., yd) ~ ., data)

Use get.mv.formula, get.mv.predicted, get.mv.error for multivariate extraction.
. Unsupervised Forests

Use:

rfsrc(data = X)

or

rfsrc(Unsupervised(ytry) ~ ., data = X)

Random subsets of ytry pseudo-responses are used for each mtry variable. No performance
metrics are computed.

. Survival, Competing Risks

e Survival: use Surv(time, status) ~ .. Status must be O (censored) or 1 (event).

* Competing risks: status = 0 (censored), 1-J (event types). Use cause to target specific
events.

rfsrc 71

» Larger nodesize is typically needed for competing risks.

10. Missing data imputation

Use na.action = "na.impute”. Iteration with nimpute > 1 replaces missing values using
OOB predictions. Observations or variables with all missing values are removed.

11. Allowable data types and factors

Variables must be numeric, integer, factor, or logical. Non-factors are coerced to numeric. For
unordered factors, all complementary subsets are considered for splits.

Factor levels are mapped to ensure consistency across training/test data. Consider converting
factors to numeric for high-dimensional settings.

Value

An object of class (rfsrc, grow) with the following components:

call The original call to rfsrc.

family The family used in the analysis.

n Sample size after applying na.action.

ntree Number of trees grown.

mtry Number of variables randomly selected at each node.

nodesize Minimum terminal node size.

nodedepth Maximum depth allowed for each tree.

splitrule Splitting rule used.

nsplit Number of random split points.

yvar Response values.

yvar.names Character vector of response variable names.

xvar Data frame of predictor variables.

xvar.names Character vector of predictor variable names.

xvar.wt Non-negative weights specifying the selection probability of each variable.
split.wt Non-negative weights adjusting each variable’s split statistic.
cause.wt Weights for composite competing risk splitting.

leaf.count Number of terminal nodes per tree. A value of 0 indicates a rejected tree (may occur
with missing data); a value of 1 indicates a stump.

proximity Proximity matrix indicating how often case pairs fall in the same terminal node.
forest Forest object, returned if forest=TRUE. Required for prediction and most wrappers.
forest.wt Forest weight matrix.

membership Terminal node membership matrix (rows: trees; columns: cases).

inbag Inbag count matrix (rows: trees; columns: cases).

var.used Number of times each variable is used to split a node.

imputed.indv Indices of individuals with missing values.

imputed.data Imputed dataset with responses followed by predictors.

72

rfsrc

split.depth Matrix or array recording minimal split depth of variables by case and tree.
err.rate Cumulative OOB error rate.

err.block.rate Cumulative error per ensemble block (size defined by block.size). If block.size
=1, error per tree.

importance Variable importance (VIMP) for each predictor.

predicted In-bag predicted values.

predicted.oob Out-of-bag (OOB) predicted values.

class (Classification) In-bag predicted class labels.

class.oob (Classification) OOB predicted class labels.

regrOutput (Multivariate) List of performance results for continuous outcomes.
clasOutput (Multivariate) List of performance results for categorical outcomes.
survival (Survival) In-bag survival functions.

survival.oob (Survival) OOB survival functions.

chf (Survival or competing risks) In-bag cumulative hazard function.

chf.oob (Survival or competing risks) OOB cumulative hazard function.
time.interest (Survival or competing risks) Unique sorted event times.

ndead (Survival or competing risks) Total number of observed events.

cif (Competing risks) In-bag cumulative incidence function by cause.

cif.oob (Competing risks) OOB cumulative incidence function by cause.

Note

Values returned by the forest depend on the family:

* Regression: predicted and predicted.oob are vectors of predicted values.

¢ Classification: predicted and predicted.oob are matrices of class probabilities. VIMP
and performance metrics are returned as a matrix with J+1 columns (J = number of classes).
The first column ("all") gives unconditional results; remaining columns give class-conditional
results.

e Survival: predicted contains mortality estimates (Ishwaran et al., 2008). These are cali-
brated to the number of expected events under identical covariate profiles. Also returned are
matrices of the survival function and CHF for each individual over time.interest.

* Competing risks: predicted contains expected life years lost by cause (Ishwaran et al.,
2013). Also returned are three-dimensional arrays for CIF and CSCHF indexed by case, time,
and event type.

¢ Multivariate: Predictions, VIMP, and error rates are returned in regrOutput and clasOutput.
Use get.mv.predicted, get.mv.vimp, and get.mv.error to extract results.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

rfsrc 73

References
Breiman L., Friedman J.H., Olshen R.A. and Stone C.J. (1984). Classification and Regression
Trees, Belmont, California.
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Cutler A. and Zhao G. (2001). PERT-Perfect random tree ensembles. Comp. Sci. Statist., 33:
490-497.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles
of decision trees: bagging, boosting, and randomization. Machine Learning, 40, 139-157.

Gray R.J. (1988). A class of k-sample tests for comparing the cumulative incidence of a competing
risk, Ann. Statist., 16: 1141-1154.

Geurts, P., Ernst, D. and Wehenkel, L., (2006). Extremely randomized trees. Machine learning,
63(1):3-42.

Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries.
Proceedings of ACM SIGMOD, 30(2):58-66.

Harrell et al. FE. (1982). Evaluating the yield of medical tests, J. Amer. Med. Assoc., 247:2543-
2546.

Hothorn T. and Lausen B. (2003). On the exact distribution of maximally selected rank statistics,
Comp. Statist. Data Anal., 43:121-137.

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist.,
1:519-537.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Stat. Anal. Data Mining, 4:115-132

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.
Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.

Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors. J. Amer. Statist.
Assoc., 101(474), 578-590.

Lu M., Sadiq S., Feaster D.J. and Ishwaran H. (2018). Estimating individual treatment effect in
observational data using random forest methods. J. Comp. Graph. Statist, 27(1), 209-219

Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.

LeBlanc M. and Crowley J. (1993). Survival trees by goodness of split, J. Amer. Statist. Assoc.,
88:457-467.

Loh W.-Y and Shih Y.-S (1997). Split selection methods for classification trees, Statist. Sinica,
7:815-840.

74 rfsrc

Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data
Mining, 14(2):144-167.

Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-
999.

Mogensen, U.B, Ishwaran H. and Gerds T.A. (2012). Evaluating random forests for survival analy-
sis using prediction error curves, J. Statist. Software, 50(11): 1-23.

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249

Segal M.R. (1988). Regression trees for censored data, Biometrics, 44:35-47.

Segal M.R. and Xiao Y. Multivariate random forests. (2011). Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery. 1(1):80-87.

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and
Data Mining, 10:363-377.

Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction inter-
vals. The American Statistician. 4:1-5.

See Also

get.tree.rfsrc,
holdout.vimp.rfsrc,
imbalanced.rfsrc, impute.rfsrc,
max.subtree.rfsrc,

partial.rfsrc,plot.competing.risk.rfsrc,plot.rfsrc,plot.survival.rfsrc,plot.variable.rfsrc,
predict.rfsrc, print.rfsrc,

quantreg.rfsrc,

rfsrc, rfsrc.anonymous, rfsrc.cart, rfsrc.fast,
sidClustering.rfsrc,

subsample.rfsrc,

tune.rfsrc,

vimp.rfsrc

veteran data

randomized trial of two treatment regimens for lung cancer
data(veteran, package = "randomForestSRC")

v.obj <- rfsrc(Surv(time, status) ~ ., data = veteran, block.size = 1)

plot tree number 3
plot(get.tree(v.obj, 3))

rfsrc 75

print results of trained forest
print(v.obj)

plot results of trained forest
plot(v.obj)

plot survival curves for first 10 individuals -- direct way
matplot(v.obj$time.interest, 100 * t(v.obj$survival.oob[1:10, 1),
xlab = "Time", ylab = "Survival”, type = "1", 1ty = 1)

plot survival curves for first 10 individuals
using function "plot.survival”
plot.survival(v.obj, subset = 1:10)

obtain Brier score using KM and RSF censoring distribution estimators
bs.km <- get.brier.survival(v.obj, cens.model = "km")$brier.score
bs.rsf <- get.brier.survival(v.obj, cens.model = "rfsrc"”)$brier.score

plot the brier score

plot(bs.km, type = "s", col = 2)

lines(bs.rsf, type ="s", col = 4)

legend("topright”, legend = c("cens.model = km", "cens.model = rfsrc”), fill = c(2,4))

plot CRPS (continuous rank probability score) as function of time
here's how to calculate the CRPS for every time point
trapz <- randomForestSRC:::trapz
time <- v.obj$time.interest
crps.km <- sapply(1:length(time), function(j) {
trapz(time[1:3j], bs.km[1:j, 2] / diff(range(time[1:31)))
»
crps.rsf <- sapply(1:length(time), function(j) {
trapz(time[1:3j], bs.rsf[1:j, 2] / diff(range(timel[1:31)))
»
plot(time, crps.km, ylab = "CRPS", type = "s", col = 2)
lines(time, crps.rsf, type ="s", col = 4)
legend("bottomright”, legend=c("cens.model = km", "cens.model = rfsrc"), fill=c(2,4))

fast nodesize optimization for veteran data

optimal nodesize in survival is larger than other families
see the function "tune" for more examples
tune.nodesize(Surv(time,status) ~ ., veteran)

Primary biliary cirrhosis (PBC) of the liver
data(pbc, package = "randomForestSRC")

pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)
print(pbc.obj)

save.memory example for survival
growing many deep trees creates memory issue without this option!

76

rfsrc

data(pbc, package = "randomForestSRC")
print(rfsrc(Surv(days, status) ~ ., pbc, splitrule = "random”,
ntree = 25000, nodesize = 1, save.memory = TRUE))

trees can be plotted for any family
see get.tree for details and more examples

survival where factors have many levels

data(veteran, package = "randomForestSRC")

vd <- veteran

vd$celltype=factor(vd$celltype)

vd$diagtime=factor(vd$diagtime)

vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5)
plot(get.tree(vd.obj, 3))

classification

iris.obj <- rfsrc(Species ~., data = iris)
plot(get.tree(iris.obj, 25, class.type = "bayes"))
plot(get.tree(iris.obj, 25, target = "setosa"))
plot(get.tree(iris.obj, 25, target "versicolor"))
plot(get.tree(iris.obj, 25, target = "virginica”))

B —m oo
simple example of VIMP using iris classification
Bt oo

directly from trained forest
print(rfsrc(Species~.,iris,importance=TRUE)$importance)

VIMP (and performance) use misclassification error by default
but brier prediction error can be requested
print(rfsrc(Species~.,iris, importance=TRUE,perf.type="brier"”)$importance)

example using vimp function (see vimp help file for details)
iris.obj <- rfsrc(Species ~., data = iris)
print(vimp(iris.obj)$importance)
print(vimp(iris.obj,perf.type="brier")$importance)

example using hold out vimp (see holdout.vimp help file for details)
print(holdout.vimp(Species~.,iris)$importance)
print(holdout.vimp(Species~.,iris,perf.type="brier")$importance)

e
confidence interval for vimp using subsampling

compare with holdout vimp

B m o

new York air quality measurements
o <- rfsrc(Ozone ~ ., data = airquality)

rfsrc 77

so <- subsample(o)
plot(so)

compare with holdout vimp

print(holdout.vimp(Ozone ~ ., data = airquality)$importance)
B o
example of imputation in survival analysis

B o

data(pbc, package = "randomForestSRC")
pbc.obj2 <- rfsrc(Surv(days, status) ~ ., pbc, na.action = "na.impute”)

same as above but iterate the missing data algorithm
pbc.obj3 <- rfsrc(Surv(days, status) ~ ., pbc,
na.action = "na.impute”, nimpute = 3)

fast way to impute data (no inference is done)
see impute for more details
pbc.imp <- impute(Surv(days, status) ~ ., pbc, splitrule = "random")

compare RF-SRC to Cox regression
Illustrates C-error and Brier score measures of performance
assumes "pec” and "survival” libraries are loaded

if (library("survival”, logical.return = TRUE)
& library("pec”, logical.return = TRUE)
& library("prodlim”, logical.return = TRUE))

{

##prediction function required for pec

predictSurvProb.rfsrc <- function(object, newdata, times, ...){
ptemp <- predict(object,newdata=newdata,...)$survival
pos <- sindex(jump.times = object$time.interest, eval.times = times)
p <- cbind(1,ptemp)[, pos + 1]
if (NROW(p) !'= NROW(newdata) || NCOL(p) '= length(times))

stop("Prediction failed")

p

}

data, formula specifications

data(pbc, package = "randomForestSRC")
pbc.na <- na.omit(pbc) #remove NA's
surv.f <- as.formula(Surv(days, status) ~ .)
pec.f <- as.formula(Hist(days,status) ~ 1)

run cox/rfsrc models

for illustration we use a small number of trees
cox.obj <- coxph(surv.f, data = pbc.na, x = TRUE)
rfsrc.obj <- rfsrc(surv.f, pbc.na, ntree = 150)

rfsrc

compute bootstrap cross-validation estimate of expected Brier score

see Mogensen, Ishwaran and Gerds (2012) Journal of Statistical Software

set.seed(17743)

prederror.pbc <- pec(list(cox.obj,rfsrc.obj), data = pbc.na, formula = pec.f,
splitMethod = "bootcv”, B = 50)

print(prederror.pbc)

plot(prederror.pbc)

compute out-of-bag C-error for cox regression and compare to rfsrc
rfsrc.obj <- rfsrc(surv.f, pbc.na)
cat("out-of-bag Cox Analysis ...", "\n")
cox.err <- sapply(1:100, function(b) {
if (b%%10 == @) cat("cox bootstrap:", b, "\n")
train <- sample(1:nrow(pbc.na), nrow(pbc.na), replace = TRUE)
cox.obj <- tryCatch({coxph(surv.f, pbc.naltrain, 1)}, error=function(ex){NULL})
if (!is.null(cox.obj)) {
get.cindex(pbc.na$days[-train], pbc.na$status[-train], predict(cox.obj, pbc.na[-train, 1))

} else NA
1))
cat("\n\tOOB error rates\n\n")
cat("\tRSF . ", rfsrc.obj$err.ratel[rfsrc.obj$ntree], "\n")
cat("\tCox regression : ", mean(cox.err, na.rm = TRUE), "\n")
3
B
competing risks
B o o

WIHS analysis
cumulative incidence function (CIF) for HAART and AIDS stratified by IDU

data(wihs, package = "randomForestSRC")

wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
plot.competing.risk(wihs.obj)

cif <- wihs.obj$cif.oob

Time <- wihs.obj$time.interest

idu <- wihs$idu

cif.haart <- cbind(apply(cif[,,1][idu == 0,], 2, mean),
apply(cif[,,1]1[idu == 1,1, 2, mean))

cif.aids <- cbind(apply(cif[,,2][idu == 0,], 2, mean),
apply(cifl,,2]1[idu == 1,1, 2, mean))

matplot(Time, cbind(cif.haart, cif.aids), type = "1",

1ty = ¢(1,2,1,2), col = c(4, 4, 2, 2), 1lwd = 3,
ylab = "Cumulative Incidence")
legend("topleft”,
legend = c("HAART (Non-IDU)", "HAART (IDU)", "AIDS (Non-IDU)", "AIDS (IDU)"),
1ty = ¢(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, cex = 1.5)

illustrates the various splitting rules
illustrates event specific and non-event specific variable selection
if (library("survival”, logical.return = TRUE)) {

rfsrc 79

use the pbc data from the survival package
events are transplant (1) and death (2)
data(pbc, package = "survival")

pbc$id <- NULL

modified Gray's weighted log-rank splitting
(equivalent to cause=c(1,1) and splitrule="logrankCR")
pbc.cr <- rfsrc(Surv(time, status) ~ ., pbc)

log-rank cause-1 specific splitting and targeted VIMP for cause 1
pbc.logl <- rfsrc(Surv(time, status) ~ ., pbc,
splitrule = "logrankCR", cause = c(1,0), importance = TRUE)

log-rank cause-2 specific splitting and targeted VIMP for cause 2
pbc.log2 <- rfsrc(Surv(time, status) ~ ., pbc,
splitrule = "logrankCR", cause = c(@,1), importance = TRUE)

extract VIMP from the log-rank forests: event-specific
extract minimal depth from the Gray log-rank forest: non-event specific
var.perf <- data.frame(md = max.subtree(pbc.cr)$order[, 11,

vimp1l = 100 * pbc.logl$importance[,1],

vimp2 = 100 * pbc.log2$importancel ,2])
print(var.perflorder(var.perf$md), 1, digits = 2)

e e e
regression analysis
B m o

new York air quality measurements
airqg.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")

partial plot of variables (see plot.variable for more details)
plot.variable(airqg.obj, partial = TRUE, smooth.lines = TRUE)

motor trend cars

mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)

B o
regression with custom bootstrap
e

ntree <- 25
n <- nrow(mtcars)
s.size <- n / 2

swr <- TRUE

samp <- randomForestSRC:::make.sample(ntree, n, s.size, swr)

o <- rfsrc(mpg ~ ., mtcars, bootstrap = "by.user”, samp = samp)
B — oo

classification analysis

rfsrc

iris data
iris.obj <- rfsrc(Species ~., data = iris)

wisconsin prognostic breast cancer data

data(breast, package = "randomForestSRC")

breast.obj <- rfsrc(status ~ ., data = breast, block.size=1)
plot(breast.obj)

e et
big data set, reduce number of variables using simple method
H m oo

use Iowa housing data set
data(housing, package = "randomForestSRC")

original data contains lots of missing data, use fast imputation
however see impute for other methods
housing2 <- impute(data = housing, fast = TRUE)

run shallow trees to find variables that split any tree
xvar.used <- rfsrc(SalePrice ~., housing2, ntree = 250, nodedepth = 4,
var.used="all.trees"”, mtry = Inf, nsplit = 100@)$var.used

now fit forest using filtered variables
xvar.keep <- names(xvar.used)[xvar.used >= 1]

o <- rfsrc(SalePrice~., housing2[, c("SalePrice", xvar.keep)])
print(o)
Tt

imbalanced classification data

see the "imbalanced” function for further details

##

(a) use balanced random forests with undersampling of the majority class
Specifically let n@, n1 be sample sizes for majority, minority

cases. We sample 2 x nl1 cases with majority, minority cases chosen
with probabilities n1/n, n@/n where n=nd+n1l

#H#

(b) balanced random forests using "imbalanced”

#H#

(c) g-classifier (RFQ) using "imbalanced”

##

Wisconsin breast cancer example
data(breast, package = "randomForestSRC")
breast <- na.omit(breast)

balanced random forests - brute force

y <- breast$status

obdirect <- rfsrc(status ~ ., data = breast, nsplit = 10,
case.wt = randomForestSRC:::make.wt(y),

rfsrc

sampsize = randomForestSRC:: :make.size(y))
print(obdirect)
print(get.imbalanced.performance(obdirect))

balanced random forests - using "imbalanced”

ob <- imbalanced(status ~ ., data = breast, method = "brf")
print(ob)

print(get.imbalanced.performance(ob))

q-classifier (RFQ) - using "imbalanced”
og <- imbalanced(status ~ ., data = breast)
print(oq)
print(get.imbalanced.performance(oq))

q-classifier (RFQ) - with auc splitting

oqauc <- imbalanced(status ~ ., data = breast, splitrule = "auc")
print(ogauc)

print(get.imbalanced.performance(ogauc))

B o
unsupervised analysis
B m oo

two equivalent ways to implement unsupervised forests
mtcars.unspv <- rfsrc(Unsupervised() ~., data = mtcars)
mtcars2.unspv <- rfsrc(data = mtcars)

illustration of sidClustering for the mtcars data
see sidClustering for more details

mtcars.sid <- sidClustering(mtcars, k = 1:10)
print(split(mtcars, mtcars.sid$cll[, 31))
print(split(mtcars, mtcars.sid$cl[, 101))

e
bivariate regression using Mahalanobis splitting
also illustrates user specified covariance matrix
B m o

if (library("mlbench”, logical.return = TRUE)) {

load boston housing data, specify the bivariate regression
data(BostonHousing)
f <- formula("Multivar(lstat, nox) ~.")

Mahalanobis splitting
bh.mreg <- rfsrc(f, BostonHousing, importance = TRUE, splitrule = "mahal"”)

performance error and vimp
vmp <- get.mv.vimp(bh.mreg)
pred <- get.mv.predicted(bh.mreg)

82

standardized error and vimp
err.std <- get.mv.error(bh.mreg, standardize = TRUE)
vmp.std <- get.mv.vimp(bh.mreg, standardize = TRUE)

same analysis, but with user specified covariance matrix
sigma <- cov(BostonHousing[, c("lstat”,"nox")1])
bh.mreg2 <- rfsrc(f, BostonHousing, splitrule = "mahal”, sigma = sigma)

#H -
multivariate mixed forests (nutrigenomic study)

study effects of diet, lipids and gene expression for mice
diet, genotype and lipids used as the multivariate y

genes used for the x features

#H -

load the data (data is a list)
data(nutrigenomic, package = "randomForestSRC")

assemble the multivariate y data

ydta <- data.frame(diet = nutrigenomic$diet,
genotype = nutrigenomic$genotype,
nutrigenomic$lipids)

multivariate mixed forest call

uses "get.mv.formula” for conveniently setting formula

mv.obj <- rfsrc(get.mv.formula(colnames(ydta)),
data.frame(ydta, nutrigenomic$genes),

importance=TRUE, nsplit = 10)

print results for diet and genotype y values
print(mv.obj, outcome.target = "diet")
print(mv.obj, outcome.target = "genotype")

extract standardized VIMP
svimp <- get.mv.vimp(mv.obj, standardize = TRUE)

plot standardized VIMP for diet, genotype and lipid for each gene
boxplot(t(svimp), col = "bisque”, cex.axis = .7, las = 2,

outline = FALSE,

ylab = "standardized VIMP",

main = "diet/genotype/lipid VIMP for each gene")

H — oo
illustrates yvar.wt which sets the probability of selecting
the response variables in multivariate regression

#H -

use mtcars: add fake responses
mult.mtcars <- cbind(mtcars, mtcars$mpg, mtcars$mpg)
names(mult.mtcars) = c(names(mtcars), "mpg2"”, "mpg3")

rfsrc

rfsrc.anonymous 83

noise up the fake responses
mult.mtcars$mpg2 <- sample(mtcars$mpg)
mult.mtcars$mpg3 <- sample(mtcars$mpg)

formula = as.formula(Multivar(mpg, mpg2, mpg3) ~ .)

select 2 of the 3 responses randomly at each split with an associated weight vector.
choose the noisy y responses which should degrade performance

yvar.wt = c(0.000001, 0.5, 0.5)

ytry = 2

mult.grow <- rfsrc(formula = formula, data = mult.mtcars, ytry = ytry, yvar.wt = yvar.wt)

print(mult.grow)
print(get.mv.error(mult.grow))

Also, compare the following two results, as they should be similar:
yvar.wt = ¢(1.0, 00000.1, 00000.1)
ytry =1

resultl = rfsrc(formula = formula, data = mult.mtcars, ytry = ytry, yvar.wt = yvar.wt)
result2 = rfsrc(mpg ~ ., mtcars)

print(get.mv.error(resultl))
print(get.mv.error(result2))

e e e e
custom splitting using the pre-coded examples
B m o

motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars, splitrule = "custom”)

iris analysis
iris.obj <- rfsrc(Species ~., data = iris, splitrule = "customl1”)

WIHS analysis
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3,
ntree = 100, splitrule = "customl1”)

rfsrc.anonymous Anonymous Random Forests

Description

Anonymous random forests is carefully modified to ensure that the original training data is not
retained. This enables users to share the trained forest with others without disclosing the underlying
data.

84 rfsrc.anonymous
Usage
rfsrc.anonymous(formula, data, forest = TRUE, ...)
Arguments
formula A symbolic description of the model to be fit. If missing, unsupervised splitting
is performed.
data A data frame containing the y-outcome and x-variables.
forest Logical. Should the forest object be returned? Required for prediction on new
data and by many other package functions.
Additional arguments passed to rfsrc. See the rfsrc help file for full details.
Details

This function calls rfsrc and returns a forest object with the original training data removed. This
enables users to share their forest while preserving the privacy of their data.

To enable prediction on new (test) data, certain minimal information from the training data must
still be retained. This includes:

* Names of the original variables.

¢ For factor variables, the levels of each factor.

* Summary statistics used for imputation: the mean for continuous variables and the most fre-
quent class for factors.

 Tree topology, including split points used to grow the trees.

For maximal privacy, users are strongly encouraged to replace variable names with non-identifiable
labels and convert all variables to continuous format when possible. If factor variables are used,
their levels should also be anonymized. However, the user is solely responsible for de-identifying
the data and verifying that privacy is maintained. We provide NO GUARANTEES regarding
data confidentiality.

Missing data handling: Anonymous forests do not support imputation of training data. The option
na.action = "na.impute” is automatically downgraded to "na.omit”. If training data contain
missing values, we recommend pre-imputing them using impute.

Test data, however, can be imputed at prediction time:
* na.action = "na.impute” performs a fast imputation by replacing missing values with the
training mean (for numeric variables) or most frequent class (for factors).
* na.action = "na.random” uses a fast random draw from training distributions for imputa-

tion.

Although anonymous forests are compatible with many package functions, they are only guaranteed
to work with functions that do not explicitly require access to the original training data.

Value

An object of class (rfsrc, grow, anonymous).

rfsrc. anonymous

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

rfsrc

Examples

B m o
regression

B o
print(rfsrc.anonymous(mpg ~ ., mtcars))

B o
plot anonymous regression tree (using get.tree)

TBD CURRENTLY NOT IMPLEMENTED

B oo
plot(get.tree(rfsrc.anonymous(mpg ~ ., mtcars), 10))

B o
classification
et
print(rfsrc.anonymous(Species ~ ., iris))

B m oo
survival

H m o
data(veteran, package = "randomForestSRC")
print(rfsrc.anonymous(Surv(time, status) ~ ., data = veteran))

e e
competing risks

B m o
data(wihs, package = "randomForestSRC")
print(rfsrc.anonymous(Surv(time, status) ~ ., wihs, ntree = 100))

e e
unsupervised forests
e SR
print(rfsrc.anonymous(data = iris))

B oo
multivariate regression

B oo
print(rfsrc.anonymous(Multivar(mpg, cyl) ~., data = mtcars))

B m o
prediction on test data with missing values using pbc data
cases 1 to 312 have no missing values

cases 313 to 418 having missing values

85

86 rfsrc.fast

H m oo
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc.anonymous(Surv(days, status) ~ ., pbc)

print(pbc.obj)

mean value imputation
print(predict(pbc.obj, pbc[-(1:312),]1, na.action = "na.impute”))

random imputation
print(predict(pbc.obj, pbc[-(1:312),], na.action = "na.random"))

B oo o

train/test setting but tricky because factor labels differ over
training and test data

B oo oo

first we convert all x-variables to factors
data(veteran, package = "randomForestSRC")
veteran.factor <- data.frame(lapply(veteran, factor))
veteran.factor$time <- veteran$time
veteran.factor$status <- veteran$status

split the data into train/test data (25/75)

the train/test data have the same levels, but different labels
train <- sample(1:nrow(veteran), round(nrow(veteran) x .5))
summary(veteran.factor[train, 1)

summary(veteran.factor[-train,])

grow the forest on the training data and predict on the test data
v.grow <- rfsrc.anonymous(Surv(time, status) ~ ., veteran.factor[train, 1)
v.pred <- predict(v.grow, veteran.factor[-train, 1)

print(v.grow)

print(v.pred)

rfsrc.fast Fast Random Forests

Description
Fast approximate random forests using subsampling with forest options set to encourage computa-
tional speed. Applies to all families.

Usage

rfsrc.fast(formula, data,
ntree = 500,
nsplit = 10,

rfsrc.fast

87

bootstrap = "by.root",

sampsize = function(x){min(x * .632, max(150, x * (3/4)))3},
samptype = "swor”,

samp = NULL,

ntime = 50,

forest = FALSE,
save.memory = TRUE,

.)

Arguments

formula
data
ntree

nsplit

bootstrap
sampsize
samptype
samp

ntime

forest

save.memory

Details

Model to be fit. If missing, unsupervised splitting is implemented.
Data frame containing the y-outcome and x-variables.
Number of trees.

Non-negative integer value specifying number of random split points used to
split a node (deterministic splitting corresponds to the value zero and can be
slower).

Bootstrap protocol used in growing a tree.

Function specifying size of subsampled data. Can also be a number.
Type of bootstrap used.

Bootstrap specification when "by.user” is used.

Integer value used for survival to constrain ensemble calculations to a grid of
ntime time points.

Save key forest values? Turn this on if you want prediction on test data.

Save memory? Setting this to FALSE stores terminal node quantities used for
prediction on test data. This yields rapid prediction but can be memory intensive
for big data, especially competing risks and survival models.

Further arguments to be passed to rfsrc.

Calls rfsrc by choosing options (like subsampling) to encourage computational speeds. This will
provide a good approximation but will not be as good as default settings of rfsrc.

Value

An object of class (rfsrc, grow).

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

rfsrc

88 rfsrc.fast

Examples

e
regression
B o

load the Iowa housing data
data(housing, package = "randomForestSRC")

do quick and *dirtyx imputation
housing <- impute(SalePrice ~ ., housing,

ntree = 50, nimpute = 1, splitrule = "random")

grow a fast forest

ol <- rfsrc.fast(SalePrice ~ ., housing)

02 <- rfsrc.fast(SalePrice ~ ., housing, nodesize = 1)
print(o1)

print(o2)

grow a fast bivariate forest
03 <- rfsrc.fast(cbind(SalePrice,Overall.Qual) ~ ., housing)
print(o3)

B oo
classification
B oo

data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)

o <- rfsrc.fast(quality ~ ., wine)
print(o)

#H# -
grow fast random survival forests without C-calculation

use brier score to assess model performance

compare pure random splitting to logrank splitting

#H -

data(peakV02, package = "randomForestSRC")

f <- as.formula(Surv(ttodead, died)~.)

ol <- rfsrc.fast(f, peakV02, perf.type = "none")

02 <- rfsrc.fast(f, peakV02, perf.type = "none"”, splitrule = "random")

bs1 <- get.brier.survival(ol, cens.model = "km")
bs2 <- get.brier.survival(o2, cens.model = "km")
plot(bs2$brier.score, type = "s", col = 2)
lines(bs1$brier.score, type = "s", col = 4)

legend("bottomright”, legend = c("random”, "logrank"), fill = c(2,4))
e
competing risks

Bt

data(wihs, package = "randomForestSRC")

rfsrc.news

o <- rfsrc.fast(Surv(time, status) ~ ., wihs)

print(o)
T
class imbalanced data using gmean performance
T

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)

f <- as.formula(status ~ .)

o <- rfsrc.fast(f, breast, perf.type = "gmean")

print(o)

#H -

class imbalanced data using random forests quantile-classifer (RFQ)
fast=TRUE => rfsrc.fast

see imbalanced function for further details

H m o

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)

89

f <- as.formula(status ~ .)
o <- imbalanced(f, breast, fast = TRUE)
print(o)
rfsrc.news Show the NEWS file
Description

Show the NEWS file of the randomForestSRC package.

Usage

rfsrc.news(...)

Arguments

Further arguments passed to or from other methods.

Value

None.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

90

sidClustering.rfsrc

sidClustering.rfsrc sidClustering using SID (Staggered Interaction Data) for Unsuper-

vised Clustering

Description

Clustering of unsupervised data using SID (Mantero and Ishwaran, 2021). Also implements the

artificial two-class

Usage

S3 method fo

sidClustering(d
method = "sid
k = NULL,
reduce = TRUE
ntree = 500,
ntree.reduce
fast = FALSE,
Xx.no.sid = NU
use.sid.for.x
x.only = NULL
dist.sharpen

Arguments

data
method

reduce

ntree

ntree.reduce

approach of Breiman (2003).

r class 'rfsrc'
ata,

n
’

’

= function(p, vtry){100 * p / vtry},

LL,
= TRUE,

, y.only = NULL,
= TRUE, ...)

A data frame containing the unsupervised data.

Clustering method. Default is "sid"”, which implements SID clustering using
Staggered Interaction Data (Mantero and Ishwaran, 2021). An alternative ap-
proach reformulates the problem as a two-class supervised learning task using
artificial data, per Breiman (2003) and Shi-Horvath (2006). Mode 1 is specified
via "sh", "SH", "sh1", or "SH1"; Mode 2 via "sh2" or "SH2". A third method,
"unsupv"”, uses a plain unsupervised forest where the data act as both features
and responses, split using the multivariate rule. This is faster than SID but may
be less accurate.

Requested number of clusters. Can be a single integer or a vector. If a scalar,
returns a vector assigning each observation to a cluster. If a vector, returns a
matrix with one column per requested value of k, each containing a clustering
assignment.

Logical. If TRUE, applies a variable reduction step via holdout VIMP. This is
conservative and computationally intensive but has strong false discovery con-
trol. Applies only when method = "sid".

Number of trees used in the main SID clustering analysis.

Number of trees used in the holdout VIMP step during variable reduction. See
holdout.vimp for details.

sidClustering.rfsrc 91

fast Logical. If TRUE, uses the fast implementation rfsrc.fast instead of rfsrc.
Improves speed at the cost of accuracy.

x.no.sid Variables to exclude from SID transformation. Can be either a separate data
frame (not overlapping with data) or a character vector of variable names from
data. These variables will be included in the final design matrix without SID
processing. Applies only when method = "sid".

use.sid.for.x Logical. If FALSE, reverses the roles of features and responses in the SID pro-
cess. Staggered interactions are applied to the outcome rather than to features.
This option is slower and generally less effective. Included for legacy compati-
bility. Applies only when method = "sid".

x.only Character vector specifying which variables to use as features. Applies only
when method = "unsupv”.

y.only Character vector specifying which variables to use as multivariate responses.
Applies only when method = "unsupv"”.

dist.sharpen Logical. If TRUE (default), applies Euclidean distance to the forest distance ma-
trix to improve clustering ("distance sharpening"). The resulting distance matrix
will not be bounded between 0 and 1. Turning this off speeds up computation but
may reduce clustering quality. Applies only when method = "sid" or "unsupv”.

Additional arguments passed to rfsrc to control forest construction.

Details

Given an unsupervised dataset, random forests is used to compute a distance matrix measuring
dissimilarity between all pairs of observations. By default, hierarchical clustering is applied to this
distance matrix, although users may apply any other clustering algorithm. See the examples below
for alternative workflows.

The default method, method = "sid"”, implements SID clustering (sidClustering). The algorithm
begins by enhancing the original feature space using Staggered Interaction Data (SID). This trans-
formation creates:

» SID main features: shifted and staggered versions of the original features that are made strictly
positive and mutually non-overlapping in range;

» SID interaction features: pairwise multiplicative interactions formed between all SID main
features.

A multivariate random forest is trained to predict SID main features using the SID interaction fea-
tures as predictors. The rationale is that if a feature is informative for distinguishing clusters, it
will exhibit systematic variation across the data space. Because each interaction feature is uniquely
defined by the features it is formed from, node splits on interaction terms are able to capture and
separate such variation, thus effectively identifying the clusters. See Mantero and Ishwaran (2021)
for further details.

Since SID includes all pairwise interactions, the dimensionality of the feature space grows quadrat-
ically with the number of original variables (or worse when factor variables are present). As such,
the reduction step using holdout variable importance (VIMP) is strongly recommended (enabled by
default). This step can be disabled using reduce = FALSE, but only when the original feature space
is of manageable size.

92 sidClustering.rfsrc

A second approach, proposed by Breiman (2003) and refined by Shi and Horvath (2006), transforms
the unsupervised task into a two-class supervised classification problem. The first class consists
of the original data, while the second class is generated artificially. The goal is to separate real
data from synthetic data. A proximity matrix is constructed from this supervised model, and the
proximity values for the original class are extracted and converted into a distance matrix (distance
=1 - proximity) for clustering.

Artificial data can be generated using two modes:

* mode 1 (default): draws random values from the empirical distribution of each feature;

* mode 2: draws uniformly between the observed minimum and maximum of each feature.

This method is invoked by setting method = "sh”, "sh1"”, or "sh2". Mantero and Ishwaran (2021)
found that while this approach works in certain settings, it can fail when clusters exist in lower-
dimensional subspaces (e.g., when defined by interactions or involving both factors and continuous
variables). Among the two modes, mode 1 is generally more robust.

The third method, method = "unsupv”, trains a multivariate forest using the data both as predictors
and as responses. The multivariate splitting rule is applied at each node. This method is fast and
simple but may be less accurate compared to SID clustering.

The package includes a helper function sid.perf.metric for evaluating clustering performance
using a normalized score; smaller values indicate better performance. See Mantero and Ishwaran
(2021) for theoretical background and empirical benchmarking.

Value

A list with the following components:

clustering A vector or matrix assigning each observation to a cluster. If multiple values of
k were specified, this is a matrix with one column per clustering solution.

rf The trained random forest object used in the clustering procedure. This is typi-
cally a multivariate forest (for method = "sid"” or "unsupv") or a classification
forest (for Breiman-style methods).

dist The distance matrix computed from the forest. Used for clustering. For method
= "sid", this is based on the forest dissimilarity; for Breiman/SH methods, this
is one minus the proximity matrix.

sid The SID-transformed data used in the clustering (applies only tomethod = "sid").
Provided as a list with separate components for the staggered features and their
interactions, corresponding to outcomes and predictors in the multivariate forest.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Breiman, L. (2003). Manual on setting up, using and understanding random forest, V4.0. University
of California Berkeley, Statistics Department, Berkeley.

Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data
Mining, 14(2):144-167.

sidClustering.rfsrc 93

Shi, T. and Horvath, S. (2006). Unsupervised learning with random forest predictors. Journal of
Computational and Graphical Statistics, 15(1):118-138.

See Also

rfsrc, rfsrc.fast

Examples

e
mtcars example
e e

default SID method
ol <- sidClustering(mtcars)
print(split(mtcars, ol1$cl[, 10]))

using artifical class approach
ol.sh <- sidClustering(mtcars, method = "sh")
print(split(mtcars, ol.sh$cl[, 101))

B o
glass data set
H — oo

if (library("mlbench”, logical.return = TRUE)) {

this is a supervised problem, so we first strip the class label
data(Glass)

glass <- Glass

y <- Glass$Type

glass$Type <- NULL

default SID call

02 <- sidClustering(glass, k = 6)
print(table(y, 02%$cl))
print(sid.perf.metric(y, 02%$cl))

compare with Shi-Horvath mode 1

02.sh <- sidClustering(glass, method = "sh1", k = 6)
print(table(y, 02.sh$cl))

print(sid.perf.metric(y, 02.sh$cl))

plain-vanilla unsupervised analysis

02.un <- sidClustering(glass, method = "unsupv”, k = 6)
print(table(y, 02.un$cl))

print(sid.perf.metric(y, o02.un$cl))

B oo
vowel data set

94

if (library("mlbench”, logical.return = TRUE) &&
library(”"cluster”, logical.return = TRUE)) {

strip the class label
data(Vowel)

vowel <- Vowel

y <- Vowel$Class
vowel$Class <- NULL

SID

03 <- sidClustering(vowel, k = 11)
print(table(y, o03$cl))
print(sid.perf.metric(y, 03%$cl))

compare to Shi-Horvath which performs poorly in
mixed variable settings

03.sh <- sidClustering(vowel, method = "sh1", k = 11)
print(table(y, o03.sh$cl))

print(sid.perf.metric(y, 03.sh$cl))

Shi-Horvath improves with PAM clustering

but still not as good as SID

03.sh.pam <- pam(o3.sh$dist, k = 11)$clustering
print(table(y, o03.sh.pam))
print(sid.perf.metric(y, o03.sh.pam))

plain-vanilla unsupervised analysis

03.un <- sidClustering(vowel, method = "unsupv”, k = 11)
print(table(y, o03.un$cl))

print(sid.perf.metric(y, o03.un$cl))

R
two-d V-shaped cluster (y=x, y=-x) sitting in 12-dimensions
illustrates superiority of SID to Breiman/Shi-Horvath

#H# -
p <- 10

m <- 250

n<-2=x*xm

std <- .2

X <= runif(n, 0, 1)

noise <- matrix(runif(n x p, @, 1), n)

y <- rep(NA, n)

y[1:m] <= x[1:m] + rnorm(m, sd = std)

yL(m+1):n] <= -x[(m+1):n] + rnorm(m, sd = std)

vclus <- data.frame(clus = c(rep(1, m), rep(2,m)), x = X, y =y, noise)

SID

sidClustering.rfsrc

subsample.rfsrc 95

04 <- sidClustering(vclus[, -1], k = 2)
print(table(vclus[, 1], o04$cl))
print(sid.perf.metric(vclus[, 11, o4$cl))

Shi-Horvath

04.sh <- sidClustering(vclus[, -11, method = "sh1”, k = 2)
print(table(vclus[, 1], o4.sh$cl))
print(sid.perf.metric(vclus[, 1], o4.sh$cl))

plain-vanilla unsupervised analysis

04.un <- sidClustering(vclus[, -1]1, method = "unsupv”, k = 2)
print(table(vclus[, 1], o4.un$cl))
print(sid.perf.metric(vclus[, 11, o4.un$cl))

e G e e e
two-d V-shaped cluster using fast random forests
H m o

05 <- sidClustering(vclus[, -1]1, k = 2, fast = TRUE)
print(table(vclus[, 11, 05%cl))
print(sid.perf.metric(vclus[, 1], o5%cl))

subsample.rfsrc Subsample Forests for VIMP Confidence Intervals

Description

Use subsampling to calculate confidence intervals and standard errors for VIMP (variable impor-
tance). Applies to all families.

Usage
S3 method for class 'rfsrc'
subsample(obj,
B = 100,
block.size = 1,
importance,

subratio = NULL,

stratify = TRUE,
performance = FALSE,
performance.only = FALSE,
joint = FALSE,

xvar.names = NULL,
bootstrap = FALSE,
verbose = TRUE)

96 subsample.rfsrc

Arguments

obj A forest grow object of class (rfsrc, grow).

B Number of subsamples (or bootstrap iterations, if bootstrap = TRUE).

block.size Number of trees in each block used when calculating VIMP. If VIMP is already
included in the original grow object, that setting is used instead.

importance Type of variable importance (VIMP) to compute. Choices are "anti”, "permute”,
or "random”. If not specified, the default importance setting from the original
grow call is used (if available).

subratio Subsample size as a proportion of the original sample size. The default is ap-
proximately the inverse square root of the sample size.

stratify Logical. If TRUE, uses stratified subsampling to preserve class balance. See
Details for more information.

performance Logical. If TRUE, calculates generalization error along with standard error and

confidence intervals.
performance.only
Logical. If TRUE, only generalization error and its uncertainty are returned;

VIMP is not computed.

joint Logical. If TRUE, joint VIMP is computed for all variables. To calculate joint
VIMP for a subset of variables, use xvar.names.

Xvar.names Character vector specifying variables to be used for joint VIMP. If omitted, all
variables are included.

bootstrap Logical. If TRUE, uses the double bootstrap instead of subsampling. This is
typically slower but may provide more accurate uncertainty estimates.

verbose Logical. If TRUE, prints progress updates during computation.

Details

This function applies subsampling (or optional double bootstrapping) to a previously trained forest
to estimate standard errors and construct confidence intervals for variable importance (VIMP), as
described in Ishwaran and Lu (2019). It also supports inference for the out-of-bag (OOB) prediction
error via the performance = TRUE option. Joint VIMP for selected or all variables can be obtained
using joint and xvar.names.

If the original forest does not include VIMP, it will be computed prior to subsampling. For repeated
calls to subsample, it is recommended that VIMP be requested in the original rfsrc call. This
not only avoids redundant computation, but also ensures consistency of the importance type (e.g.,
anti, permute, or random) and related parameters, which may otherwise be unclear. Note that
permutation importance is not the default for most families.

Subsampled forests are constructed using the same tuning parameters as the original forest. While
most settings are automatically recovered, certain advanced configurations (e.g., custom sampling
schemes) may not be fully supported.

Both subsampled variance estimates (Politis and Romano, 1994) and delete-\(d\) jackknife vari-
ance estimates (Shao and Wu, 1989) are returned. The jackknife estimator tends to produce larger
standard errors, offering a conservative bias correction, particularly for signal variables.

By default, stratified subsampling is used for classification, survival, and competing risk families:

subsample.rfsrc 97

* For classification, strata correspond to class labels.

* For survival and competing risks, strata include event type and censoring.

Stratification helps ensure representation of key outcome types and is especially important for small
sample sizes. Overriding this behavior is discouraged. Note that stratification is not available for
multivariate families, and caution should be exercised when subsampling in that context.

The function extract. subsample can be used to retrieve detailed information from the subsample
object. By default, returned VIMP values are standardized: for regression families, VIMP is divided
by the variance of the response; for other families, no transformation is applied. To obtain raw
(unstandardized) values, set standardize = FALSE. For expert users, the option raw = TRUE returns
detailed internal output, including VIMP from each individual subsampled forest (constructed on a
smaller sample size), which is used internally by plot.subsample.rfsrc to generate confidence
intervals.

Printed and plotted outputs also standardize VIMP by default. This behavior can be disabled via
standardize. The alpha option controls the confidence level and is preset in wrapper functions
but can be adjusted by the user.

Value

A list with the following key components:

rf Original forest grow object.
vmp Variable importance values for grow forest.
vmpS Variable importance subsampled values.
subratio Subratio used.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.

Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under
minimal assumptions. The Annals of Statistics, 22(4):2031-2050.

Shao, J. and Wu, C.J. (1989). A general theory for jackknife variance estimation. The Annals of
Statistics, 17(3):1176-1197.

See Also

holdout.vimp.rfsrc plot.subsample.rfsrc, rfsrc, vimp.rfsrc

98 subsample.rfsrc

Examples

e
regression
B o

training the forest
reg.o <- rfsrc(Ozone ~ ., airquality)

default subsample call
reg.smp.o <- subsample(reg.o)

plot confidence regions
plot.subsample(reg.smp.o)

summary of results
print(reg.smp.o)

joint vimp and confidence region for generalization error
reg.smp.o2 <- subsample(reg.o, performance = TRUE,

joint = TRUE, xvar.names = c("”Day”, "Month"))
plot.subsample(reg.smp.02)

now try the double bootstrap (slower)

reg.dbs.o <- subsample(reg.o, B = 25, bootstrap = TRUE)
print(reg.dbs.o)

plot.subsample(reg.dbs.o)

standard error and confidence region for generalization error only
gerror <- subsample(reg.o, performance.only = TRUE)
plot.subsample(gerror)

HHE m oo
classification
B —m

3 non-linear, 15 linear, and 5 noise variables
if (library("caret”, logical.return = TRUE)) {

d <- twoClassSim(1000, linearVars = 15, noiseVars = 5)

VIMP based on (default) misclassification error

cls.o <- rfsrc(Class ~ ., d)
cls.smp.o <- subsample(cls.o, B = 100)
plot.subsample(cls.smp.o, cex.axis = .7)

same as above, but with VIMP defined using normalized Brier score
cls.02 <- rfsrc(Class ~ ., d, perf.type = "brier")

cls.smp.02 <- subsample(cls.o2, B = 100)

plot.subsample(cls.smp.02, cex.axis = .7)

B oo
class-imbalanced data using RFQ classifier with G-mean VIMP

subsample.rfsrc

if

(library("caret"”, logical.return = TRUE)) {

experimental settings

n <- 1000
q <- 20
ir <- 6

f <- as.formula(Class ~ .)

simulate the data, create minority class data

d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)

idx.@ <- which(d$Class == @)

idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]
RFQ classifier
oq <- imbalanced(Class ~ ., d, importance = TRUE, block.size = 10)
subsample the RFQ-classifier
smp.oq <- subsample(oq, B = 100)
plot.subsample(smp.oq, cex.axis = .7)
}
#H# -
survival
#H -
data(pbc, package = "randomForestSRC")
srv.o <- rfsrc(Surv(days, status) ~ ., pbc)
srv.smp.o <- subsample(srv.o, B = 100)
plot(srv.smp.o)
#H# -
competing risks
target event is death (event = 2)
#H# -
if (library("survival”, logical.return = TRUE)) {
data(pbc, package = "survival")
pbc$id <- NULL
cr.o <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = 2)

#it
#i#
#it

if

cr.smp.o <- subsample(cr.o, B = 100)
plot.subsample(cr.smp.o, target = 2)

multivariate

(library("mlbench”, logical.return = TRUE)) {

99

100 tune.rfsrc
simulate the data
data(BostonHousing)
bh <- BostonHousing
bh$rm <- factor(round(bh$rm))
o <- rfsrc(cbind(medv, rm) ~ ., bh)
so <- subsample(o)
plot.subsample(so)
plot.subsample(so, m.target = "rm")
##generalization error
gerror <- subsample(o, performance.only = TRUE)
plot.subsample(gerror, m.target = "medv")
plot.subsample(gerror, m.target = "rm")
}
-
largish data example - use rfsrc.fast for fast forests
#H -
if (library("caret”, logical.return = TRUE)) {
largish data set
d <- twoClassSim(100@, linearVars = 15, noiseVars = 5)
use a subsampled forest with Brier score performance
remember to set forest=TRUE for rfsrc.fast
o <- rfsrc.fast(Class ~ ., d, ntree = 100,
forest = TRUE, perf.type = "brier")
so <- subsample(o, B = 100)
plot.subsample(so, cex.axis = .7)
3
tune.rfsrc Tune Random Forest for optimal mtry and nodesize
Description

Finds the optimal mtry and nodesize for a random forest using out-of-bag (OOB) error. Two
search strategies are supported: a grid-based search and a golden-section search with noise control.
Works for all response families supported by rfsrc. fast.

Usage

S3 method for class 'rfsrc'
tune(formula, data,
mtry.start = ncol(data) / 2,
nodesize.try = c(1:9, seq(10, 100, by = 5)), ntree.try = 100,
sampsize = function(x) { min(x * .632, max(150, x*(3/4))) },
nsplit = 1, step.factor = 1.25, improve = le-3, strikeout = 3, max.iter = 25,

tune.rfsrc

101

method = c("grid”, "golden"),

final.window

= 5, reps.initial = 2, reps.final = 3,

trace = FALSE, do.best = TRUE, seed = NULL, ...)

S3 method for class

'rfsrc'

tune.nodesize(formula, data,
nodesize.try = c(1:9, seq(10, 150, by = 5)), ntree.try = 100,

sampsize =

function(x) { min(x * .632, max(150, x*(4/5))) 1},

nsplit = 1, method = c("grid”, "golden"),

final.window

nodesize.try
ntree.try

sampsize

nsplit
step.factor
improve
strikeout

max.iter

method
final.window
reps.initial

reps.final

trace
do.best

seed

= 5, reps.initial = 2, reps.final = 3, max.iter = 50,

trace = TRUE, seed = NULL, ...)
Arguments
formula A model formula.
data A data frame with response and predictors.
mtry.start Initial mtry for tune.

Candidate nodesize values. Only values < floor (sampsize(n)/2) are used.
Number of trees grown at each tuning evaluation.

Function or numeric giving the per-tree subsample size. During tuning a sin-
gle numeric size ssize is computed and passed to rfsrc.fast. If a vector is
supplied (e.g., class specific), its total is used for ssize.

Number of random split points to consider at each node.

Multiplicative step-out factor over mtry for grid search in tune.

Minimum relative improvement required to continue a search step in tune.
Maximum number of consecutive non-improving steps allowed in tune.

Maximum number of iterations for the step-out search in tune or the coordinate
loop when method = "golden".

Search strategy: "grid” (default) or "golden”.
For golden search, the terminal bracket width for the one-dimensional line search.
Replicates averaged at interior evaluations during golden iterations.

Replicates averaged for each candidate during the final local sweep in golden
search.

If TRUE, prints progress.
If TRUE, tune fits and returns a forest at the optimal pair.

Optional integer for reproducible tuning. The holdout split (when used) and all
tuning fits become deterministic for a given seed.

Additional arguments passed to rfsrc.fast. Arguments that control tuning
itself (perf.type, forest, save.memory, ntree, mtry, nodesize, sampsize,
nsplit) are managed internally.

102 tune.rfsrc

Details
Error estimate. If 2 x ssize <n, a disjoint holdout of size ssize is used for evaluation; otherwise

OOB error is used.

Subsample used during tuning. Both functions derive a single integer ssize from sampsize and
pass it to rfsrc. fast for all tuning fits. This improves stability and comparability across candi-
dates. When do.best = TRUE in tune, the final forest is fit with the user-supplied sampsize exactly
as provided.

Grid search. tune performs a step-out search over mtry for each nodesize in nodesize.try,
using step.factor, improve, strikeout, and max.iter. tune.nodesize evaluates the supplied
nodesize. try grid directly.

Golden search. Uses a guarded golden-section line search with noise control. For each one-
dimensional search (over nodesize or mtry), the routine probes a small left-anchor grid 1:9, it-
erates golden shrinkage until the bracket width is at most final.window, then runs a short local
sweep with reps.final replicates. In tune the searches over nodesize and mtry alternate in a
simple coordinate loop, with improve and strikeout as stopping controls.

Value

For tune:

e results: matrix with columns nodesize, mtry, err.
e optimal: named numeric vector c(nodesize= ..., mtry=...).

* rf: fitted forest at the optimum if do.best = TRUE.
For tune.nodesize:

* nsize.opt: optimal nodesize.

e err: data frame with columns nodesize and err.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

rfsrc.fast

Examples

B o m o mmmmo
White wine classification example
e e T
data(wine, package = "randomForestSRC")

wine$quality <- factor(wine$quality)

Fixed seed makes tuning reproducible
set.seed(1)

Full tuner over nodesize and mtry (grid)

tune.rfsrc

ol <- tune(quality ~ ., wine, sampsize = 100, method = "grid")

print(ol$optimal)

Golden search alternative

02 <- tune(quality ~ ., wine, sampsize = 100, method = "golden”,

reps.initial = 2, reps.final = 3, seed = 1)
print(o2$optimal)

visualize the nodesize/mtry surface
if (library("interp"”, logical.return = TRUE)) {

plot.tune <- function(o, linear = TRUE) {
X <- o$results[, 1]
y <- o$results[, 2]
z <- o$results[, 3]
so <- interp(x = x, y =y, z =z, linear = linear)
idx <- which.min(z)
X0 <- x[idx]; y@ <- y[idx]
filled.contour(x = so$x, y = so$y, z = so$z,

xlim = range(so$x, finite = TRUE) + c(-2, 2),
ylim = range(so$y, finite = TRUE) + c(-2, 2),
color.palette = colorRampPalette(c("yellow”, "red")),

xlab = "nodesize"”, ylab = "mtry",
main = "error rate for nodesize and mtry"”,
key.title = title(main = "QOB error”, cex.main = 1),
plot.axes = {
axis(1); axis(2)
points(x@, y@, pch = "x", cex = 1, font = 2)
points(x, y, pch = 16, cex = .25)
»
}
plot.tune(ol)
plot.tune(o2)
3
B — oo
nodesize only: grid vs golden
#H# -
03 <- tune.nodesize(quality ~ ., wine, sampsize = 100, method = "grid",
trace = TRUE, seed = 1)
04 <- tune.nodesize(quality ~ ., wine, sampsize = 100, method = "golden",
reps.initial = 2, reps.final = 3, trace = TRUE, seed = 1)
plot(o3$err, type = "s", xlab = "nodesize"”, ylab = "error")
#H -

Tuning for class imbalance (rfq with geometric mean performance)

S

data(breast, package = "randomForestSRC")

breast <- na.omit(breast)

05 <- tune(status ~ ., data = breast, rfq = TRUE, perf.type =
method = "golden”, seed = 1)

print(o5%optimal)

"gmean” ,

103

104 veteran

et e e e
Competing risks example (nodesize only)
H — o
data(wihs, package = "randomForestSRC")
plot(tune.nodesize(Surv(time, status) ~ ., wihs, trace = TRUE)S$err, type = "s")
vdv van de Vijver Microarray Breast Cancer
Description

Gene expression profiling for predicting clinical outcome of breast cancer (van’t Veer et al., 2002).
Microarray breast cancer data set of 4707 expression values on 78 patients with survival informa-
tion.

References
van’t Veer L.J. et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer.
Nature, 12, 530-536.

Examples

data(vdv, package = "randomForestSRC")

veteran Veteran’s Administration Lung Cancer Trial

Description
Randomized trial of two treatment regimens for lung cancer. This is a standard survival analysis
data set.

Source

Kalbfleisch and Prentice, The Statistical Analysis of Failure Time Data.

References
Kalbfleisch J. and Prentice R, (1980) The Statistical Analysis of Failure Time Data. New York:
Wiley.

Examples

data(veteran, package = "randomForestSRC")

vimp.rfsrc 105

vimp.rfsrc VIMP for Single or Grouped Variables

Description

Calculate variable importance (VIMP) for a single variable or group of variables for training or test
data.

Usage

S3 method for class 'rfsrc'
vimp(object, xvar.names,

importance = c("anti"”, "permute”, "random"), block.size = 10,
joint = FALSE, seed = NULL, do.trace = FALSE, ...)
Arguments
object An object of class (rfsrc, grow) or (rfsrc, forest). The original rfsrc call

must have been made with forest = TRUE.

xvar.names Character vector of x-variable names to be evaluated. If not specified, all vari-
ables are used.

importance Type of variable importance (VIMP) to compute.

block.size Integer specifying the number of trees per block used for VIMP calculation.
Balances between ensemble-level and tree-level estimates.

joint Logical indicating whether to compute joint VIMP for the specified variables.

seed Negative integer used to set the random number generator seed.

do.trace Number of seconds between printed progress updates.

Additional arguments passed to or from other methods.

Details

Using a previously trained forest, this function calculates variable importance (VIMP) for the spec-
ified variables in xvar.names. By default, VIMP is computed using the original training data, but
the user may supply a new test set via the newdata argument. See rfsrc for further details on how
VIMP is computed.

If joint = TRUE, joint VIMP is returned. This is defined as the importance of a group of variables
when the entire group is perturbed simultaneously.

Setting csv = TRUE returns case-specific VIMP, which provides VIMP estimates at the individual
observation level. This applies to all families except survival. See examples below.

Value

An object of class (rfsrc, predict) containing importance values.

106 vimp.rfsrc

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist.,
1:519-537.

See Also

holdout.vimp.rfsrc, rfsrc

Examples

B — oo
classification example

showcase different vimp

#H -

iris.obj <- rfsrc(Species ~ ., data = iris)

anti vimp (default)
print(vimp(iris.obj)$importance)

anti vimp using brier prediction error
print(vimp(iris.obj, perf.type = "brier")$importance)

permutation vimp
print(vimp(iris.obj, importance = "permute”)$importance)

random daughter vimp
print(vimp(iris.obj, importance = "random")$importance)

joint anti vimp
print(vimp(iris.obj, joint = TRUE)$importance)

paired anti vimp
print(vimp(iris.obj, c("Petal.Length”, "Petal.Width"), joint = TRUE)S$importance)
print(vimp(iris.obj, c("Sepal.Length”, "Petal.Width"), joint = TRUE)$importance)

e e e
survival example

anti versus permute VIMP with different block sizes

#H -

data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)

print(vimp(pbc.obj)$importance)

print(vimp(pbc.obj, block.size=1)$importance)

print(vimp(pbc.obj, importance="permute")$importance)
print(vimp(pbc.obj, importance="permute”, block.size=1)$importance)

vimp.rfsrc 107

#H -
imbalanced classification example

see the imbalanced function for more details
e Tt

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)

f <- as.formula(status ~ .)

o <- rfsrc(f, breast, ntree = 2000)

permutation vimp
print(100 * vimp(o, importance = "permute”)$importance)

anti vimp using gmean performance
print(100 * vimp(o, perf.type = "gmean")$importancel[, 1])

B oo
regression example
e et P PR
airg.obj <- rfsrc(Ozone ~ ., airquality)

print(vimp(airqg.obj))

e e e
regression example where vimp is calculated on test data
HH m o

set.seed(100080)
train <- sample(1:nrow(airquality), size = 80)
airg.obj <- rfsrc(Ozone~., airquality[train,])

training data vimp
print(airq.obj$importance)
print(vimp(airq.obj)$importance)

test data vimp
print(vimp(airqg.obj, newdata = airquality[-train, 1)$importance)

H#f
case-specific vimp

returns VIMP for each case

H#f

o <- rfsrc(mpg~., mtcars)

v <- vimp(o, csv = TRUE)

csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)

B m o
case-specific joint vimp

returns joint VIMP for each case

B m o

108 wihs

o <- rfsrc(mpg~., mtcars)

v <- vimp(o, joint = TRUE, csv = TRUE)
csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)

e e
case-specific joint vimp for multivariate regression

returns joint VIMP for each case, for each outcome

#H -

o <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
v <- vimp(o, joint = TRUE, csv = TRUE)

csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)

wihs Women’s Interagency HIV Study (WIHS)

Description

Competing risk data set involving AIDS in women.

Format

A data frame containing:

time time to event

status censoring status: O=censoring, I=HAART initiation, 2=AIDS/Death before HAART
ageatfda age in years at time of FDA approval of first protease inhibitor

idu history of IDU: O=no history, 1=history

black race: O=not African-American; 1=African-American

cd4nadir CD4 count (per 100 cells/ul)

Source

Study included 1164 women enrolled in WIHS, who were alive, infected with HIV, and free of clin-
ical AIDS on December, 1995, when the first protease inhibitor (saquinavir mesylate) was approved
by the Federal Drug Administration. Women were followed until the first of the following occurred:
treatment initiation, AIDS diagnosis, death, or administrative censoring (September, 2006). Vari-
ables included history of injection drug use at WIHS enrollment, whether an individual was African
American, age, and CD4 nadir prior to baseline.

References

Bacon M.C, von Wyl V., Alden C., et al. (2005). The Women’s Interagency HIV Study: an obser-
vational cohort brings clinical sciences to the bench, Clin Diagn Lab Immunol, 12(9):1013-1019.

wine 109

Examples
data(wihs, package = "randomForestSRC")
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
wine White Wine Quality Data
Description

The inputs include objective tests (e.g. PH values) and the output is based on sensory data (median
of at least 3 evaluations made by wine experts) of white wine. Each expert graded the wine quality
between O (very bad) and 10 (very excellent).

References

Cortez, P., Cerdeira, A., Almeida, F., Matos T. and Reis, J. (2009). Modeling wine preferences by
data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-
553.

Examples

load wine and convert to a multiclass problem
data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)

Index

* anonymous
rfsrc.anonymous, 83
* clustering
sidClustering.rfsrc, 90
+ confidence interval
subsample.rfsrc, 95
+ datasets
breast, 6
follic,7
hd, 11
housing, 16
nutrigenomic, 29
pbc, 37
peakV02, 38
vdv, 104
veteran, 104
wihs, 108
wine, 109
*x documentation
rfsrc.news, 89
x fast
rfsrc.fast, 86
x forest
predict.rfsrc, 51
rfsrc, 66
rfsrc.anonymous, 83
rfsrc.fast, 86
tune.rfsrc, 100
x imbalanced two-class data
imbalanced.rfsrc, 17
* missing data
impute.rfsrc, 23
+ package
randomForestSRC-package, 2
* partial
partial.rfsrc, 31
+ plot
get.tree.rfsrc,7
plot.competing.risk.rfsrc, 39

plot.quantreg.rfsrc, 41
plot.rfsrc, 42
plot.subsample.rfsrc, 43
plot.survival.rfsrc, 45
plot.variable.rfsrc, 47

* predict
predict.rfsrc, 51
vimp.rfsrc, 105

* print
print.rfsrc, 60

* quantile regression forests
quantreg.rfsrc, 61

* subsampling
subsample.rfsrc, 95

* tune
tune.rfsrc, 100

* unsupervised
sidClustering.rfsrc, 90

* variable selection
max.subtree.rfsrc, 27
vimp.rfsrc, 105

* vimp
holdout.vimp.rfsrc, 11
subsample.rfsrc, 95

breast, 6
extract.subsample, 97
follic, 7,40

get.brier.survival
(plot.survival.rfsrc), 45

get.imbalanced.performance, I8

get.mv.error, 55

get.mv.predicted, 55

get.mv.vimp, 55

get.partial.plot.data (partial.rfsrc),
31

get.tree, 3

INDEX

get.tree (get.tree.rfsrc), 7
get.tree.rfsrc, 5,7, 74

hd, 11, 40

holdout.vimp, 3, 52, 90

holdout.vimp (holdout.vimp.rfsrc), 11

holdout.vimp.rfsrc, 5, 11, 29, 55, 74, 97,
106

housing, 16

imbalanced, 3

imbalanced (imbalanced.rfsrc), 17
imbalanced.rfsrc, 3, 5, 17, 74
impute, 3, 84

impute (impute.rfsrc), 23
impute.rfsrc, 3, 5,23, 74

max.subtree (max.subtree.rfsrc), 27
max.subtree.rfsrc, 6,27, 74

nutrigenomic, 29

partial, 3

partial (partial.rfsrc), 31

partial.rfsrc, 3, 6, 31, 49, 50, 74

pbc, 37

peakV02, 38

plot.competing.risk
(plot.competing.risk.rfsrc), 39

plot.competing.risk.rfsrc, 6, 39, 46, 55,
74

plot.quantreg (plot.quantreg.rfsrc), 41

plot.quantreg.rfsrc, 41

plot.rfsrc, 6,42, 55, 74

plot.subsample (plot.subsample.rfsrc),
43

plot.subsample.rfsrc, 43, 97

plot.survival (plot.survival.rfsrc), 45

plot.survival.rfsrc, 6, 45, 55, 74

plot.variable, 48

plot.variable (plot.variable.rfsrc), 47

plot.variable.rfsrc, 6, 33,47, 55, 74

predict.rfsrc, 3, 6, 46, 50, 51, 74

print.rfsrc, 6, 60, 74

quantreg, 3
quantreg (quantreg.rfsrc), 61
quantreg.rfsrc, 3, 6,41, 61, 74

randomForestSRC (rfsrc), 66

111

randomForestSRC-package, 2

rfsrc,3,6,12,17, 18, 25, 40, 46, 50, 55, 63,
66, 74, 84, 85,87, 91, 93, 97, 105,
106

rfsrc.anonymous, 74, 83

rfsrc.cart, 6, 74

rfsrc.fast, 3,6, 17, 18, 25, 55, 69, 74, 86,
91,93,101, 102

rfsrc.news, 89

sidClustering (sidClustering.rfsrc), 90
sidClustering.rfsrc, 3, 6, 74, 90
subsample, 3

subsample (subsample.rfsrc), 95
subsample.rfsrc, 6, 45, 74,95

tune (tune.rfsrc), 100
tune.rfsrc, 6, 74, 100

vdv, 104

veteran, 104

vimp, 3, 52

vimp (vimp.rfsrc), 105
vimp.rfsrc, 6, 13,29, 55, 74, 97, 105

wihs, 40, 108
wine, 109

	randomForestSRC-package
	breast
	follic
	get.tree.rfsrc
	hd
	holdout.vimp.rfsrc
	housing
	imbalanced.rfsrc
	impute.rfsrc
	max.subtree.rfsrc
	nutrigenomic
	partial.rfsrc
	pbc
	peakVO2
	plot.competing.risk.rfsrc
	plot.quantreg.rfsrc
	plot.rfsrc
	plot.subsample.rfsrc
	plot.survival.rfsrc
	plot.variable.rfsrc
	predict.rfsrc
	print.rfsrc
	quantreg.rfsrc
	rfsrc
	rfsrc.anonymous
	rfsrc.fast
	rfsrc.news
	sidClustering.rfsrc
	subsample.rfsrc
	tune.rfsrc
	vdv
	veteran
	vimp.rfsrc
	wihs
	wine
	Index

