
Package ‘manydata’
September 30, 2025

Title Many Global Governance Datacubes

Version 1.1.3

Date 2025-09-30

Description This is the core package offering a portal to the many packages universe.
It includes functions to help researchers access, work across, and maintain
ensembles of datasets on global governance called datacubes.

License CC BY 4.0

URL https://www.manydata.ch/

BugReports https://github.com/globalgov/manydata/issues

Depends R (>= 3.5.0), cli, dplyr, messydates (>= 0.5.0)

Imports caret, dtplyr, ggplot2 (>= 3.4.0), glmnet, httr, jsonlite,
purrr, remotes, stringr, text2vec, tidyr

Suggests testthat, readr, knitr, rmarkdown, ggVennDiagram, rlang

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Config/Needs/build roxygen2, devtools

Config/Needs/check covr, lintr, spelling

Config/Needs/website pkgdown

Config/testthat/parallel true

Config/testthat/edition 3

Config/testthat/start-first compare

NeedsCompilation no

Author James Hollway [cre, aut, ctb] (IHEID, ORCID:
<https://orcid.org/0000-0002-8361-9647>),

Henrique Sposito [aut, ctb] (IHEID, ORCID:
<https://orcid.org/0000-0003-3420-6085>),

Bernhard Bieri [ctb] (IHEID, ORCID:
<https://orcid.org/0000-0001-5943-9059>),

1

https://www.manydata.ch/
https://github.com/globalgov/manydata/issues
https://orcid.org/0000-0002-8361-9647
https://orcid.org/0000-0003-3420-6085
https://orcid.org/0000-0001-5943-9059

2 call_packages

Esther Peev [ctb] (IHEID, ORCID:
<https://orcid.org/0000-0002-9678-2777>),

Jael Tan [ctb] (IHEID, ORCID: <https://orcid.org/0000-0002-6234-9764>)

Maintainer James Hollway <james.hollway@graduateinstitute.ch>

Repository CRAN

Date/Publication 2025-09-30 12:50:02 UTC

Contents
call_packages . 2
call_releases . 3
call_sources . 4
call_treaties . 5
code_extend . 6
compare_categories . 7
compare_diff . 8
compare_dimensions . 10
compare_missing . 11
compare_overlap . 12
consolidate . 13
describe . 14
emperors . 15
filter_datacube . 17
find . 18
find_year . 18
pluck . 19
recollect . 20
repaint . 20
resolving . 21
reunite . 23
scores . 24
transmutate . 25

Index 26

call_packages Call, download, and update many* packages

Description

call_packages() finds and download other packages that belong to the many universe of pack-
ages. It allows users to rapidly access the names and other descriptive information of these pack-
ages. If users intend to download and install a package listed, they can type the package name
within the function.

https://orcid.org/0000-0002-9678-2777
https://orcid.org/0000-0002-6234-9764

call_releases 3

Usage

call_packages(package, develop = FALSE)

Arguments

package A character vector of package name. For multiple packages, please declare
package names as a vector (e.g. c("package1", "package2")).

develop Would you like to download the develop version of the package? FALSE by
default.

Value

call_packages() returns a tibble with the ’many packages’ currently available. If one or more
package names are provided, these will be installed from Github.

See Also

Other call_: call_releases(), call_treaties()

Examples

#call_packages()
#call_packages("manyenviron")

call_releases Call releases historical milestones/releases

Description

The function will take a data frame that details this information, or more usefully, a Github reposi-
tory listing.

Usage

call_releases(repo, begin = NULL, end = NULL)

Arguments

repo the github repository to track, e.g. "globalgov/manydata"

begin When to begin tracking repository milestones. By default NULL, two months
before the first release.

end When to end tracking repository milestones. By default NULL, two months
after the latest release.

4 call_sources

Details

The function creates a project timeline graphic using ggplot2 with historical milestones and mile-
stone statuses gathered from a specified GitHub repository.

Value

A ggplot graph object

Source

https://benalexkeen.com/creating-a-timeline-graphic-using-r-and-ggplot2/

See Also

Other call_: call_packages(), call_treaties()

Examples

#call_releases("globalgov/manydata")
#call_releases("manypkgs")

call_sources Call sources and citations

Description

These functions call any source or citation information that is available for a datacube or dataset.
The function can be used on its own to the console, called during another function call such as
consolidate() or pluck(), or is used to automatically and consistently populate help files.

Usage

call_sources(x)

call_citations(x, output = c("console", "help"))

Arguments

x A datacube or dataset

output Whether the output should be formatted for "console" or the "help" page.

call_treaties 5

call_treaties Call treaties from ’many’ datasets

Description

Call treaties from ’many’ datasets

Usage

call_treaties(
dataset,
treaty_type = NULL,
variable = NULL,
actor = NULL,
key = "manyID"

)

Arguments

dataset A dataset in a datacube from one of the many packages. NULL by default. That
is, all datasets in the datacube are used. For multiple datasets, please declare
datasets as a vector (e.g. c("dataset1", "dataset2")).

treaty_type The type of treaties to be returned. NULL, by default. Other options are "bilat-
eral" or "multilateral".

variable Would you like to get one, or more, specific variables present in one or more
datasets in the ’many’ datacube? NULL by default. For multiple variables,
please declare variable names as a vector.

actor An actor variable in dataset. NULL by default. If declared, a tibble of the treaties
and their member actors is returned.

key A variable key to join datasets. ’manyID’ by default.

Details

Certain datasets, or consolidated datacubes, in ’many’ packages contains information on treaties
which can be retrieved with call_treaties().

Value

call_treaties() returns a tibble with a list of the agreements.

See Also

Other call_: call_packages(), call_releases()

6 code_extend

Examples

membs <- dplyr::tibble(manyID = c("ROU-RUS[RFP]_1901A",
"ROU-RUS[RFP]_1901A", "GD16FI_1901A"),
stateID = c("ROU", "RUS", "DNK"),
Title = c("Convention Between Roumania And Russia Concerning Fishing
In The Danube And The Pruth",
"Convention Between Roumania And Russia Concerning Fishing
In The Danube And The Pruth",
"Convention Between The Governments Of Denmark And
The United Kingdom Of Great Britain
And Northern Ireland For Regulating The Fisheries
Of Their Respective Subjects Outside
Territorial Waters In The Ocean Surrounding The Faroe Islands"),
Begin = c("1901-02-22", "1901-02-22", "1901-06-24"))
call_treaties(membs)
call_treaties(membs, treaty_type = "bilateral",
variable = c("Title", "Begin"))
call_treaties(membs, variable = c("Title", "Begin"), actor = "stateID")

code_extend Extending codes

Description

These functions use text embeddings and multinomial logistic regression to suggest missing codes
or flag potentially incorrect codes based on text data. Two approaches are provided: one using
GloVe embeddings trained on the input text, and another using pre-trained BERT embeddings via
the {text} package. Both functions require a vector of text (e.g., titles or descriptions) and a
corresponding vector of categorical codes, with NA or empty strings indicating missing codes to
be inferred. The functions train a multinomial logistic regression model using glmnet on the text
embeddings of the entries with known codes, and then predict codes for the entries with missing
codes. The functions also validate the model’s performance on a holdout set and report per-class
precision, recall, and F1-score. If no missing codes are present, the functions instead check existing
codes for potential mismatches and report them.

Usage

code_extend_glove(titles, var, req_f1 = 0.8, rarity_threshold = 8)

code_extend_bert(titles, var, req_f1 = 0.8, rarity_threshold = 8, emb_texts)

Arguments

titles A character vector of text entries (e.g., titles or descriptions).
var A character vector of (categorical) codes that might be coded from the titles or

texts. Entries with missing codes should be NA_character_ or empty strings.
The function will suggest codes for these entries. If no missing codes are
present, the function will check existing codes for potential mismatches.

compare_categories 7

req_f1 The required macro-F1 score on the validation set before proceeding with infer-
ence. Default is 0.80.

rarity_threshold

Minimum number of occurrences for a code to be included in training. Codes
with fewer occurrences are excluded from training to ensure sufficient data for
learning. Default is 8.

emb_texts For code_extend_bert(), pre-computed embeddings from text::textEmbed().
This avoids re-computing embeddings if they have already been computed. A
Hugging Face model can be specified via the model argument. Default is "sentence-
transformers/all-MiniLM-L6-v2". Other models can be used, but they should
produce sentence-level embeddings.

Examples

titles <- paste(emperors$Wikipedia$CityBirth,
emperors$Wikipedia$ProvinceBirth,
emperors$Wikipedia$Rise,
emperors$Wikipedia$Dynasty,
emperors$Wikipedia$Cause)

var <- emperors$Wikipedia$Killer
var[var=="Unknown"] <- NA
var[var %in% c("Senate","Court Officials","Opposing Army")] <- "Enemies"
var[var %in% c("Fire","Lightning","Aneurism","Heart Failure")] <- "God"
var[var %in% c("Wife","Usurper","Praetorian Guard","Own Army")] <- "Friends"
glo <- code_extend_glove(titles,

var)

compare_categories Compare categories in ’many’ datacubes

Description

Compare categories in ’many’ datacubes

Usage

compare_categories(
datacube,
dataset = "all",
key = "manyID",
variable = "all",
category = "all"

)

8 compare_diff

Arguments

datacube A datacube from one of the many packages.

dataset A dataset in a datacube from one of the many packages. By default "all". That
is, all datasets in the datacube are used. To select two or more datasets, please
declare them as a vector.

key A variable key to join datasets. ’manyID’ by default.

variable Would you like to focus on one, or more, specific variables present in one or
more datasets in the ’many’ datacube? By default "all". For multiple variables,
please declare variable names as a vector.

category Would you like to focus on one specific code category? By default "all" are
returned. Other options include "confirmed", "unique", "missing", "conflict", or
"majority". For multiple variables, please declare categories as a vector.

Details

Confirmed values are the same in all datasets in datacube. Unique values appear once in datasets in
datacube. Missing values are missing in all datasets in datacube. Conflict values are different in the
same number of datasets in datacube. Majority values have the same value in multiple, but not all,
datasets in datacube.

See Also

Other compare_: compare_dimensions(), compare_missing(), compare_overlap()

Examples

compare_categories(emperors, key = "ID")
compare_categories(datacube = emperors, dataset = c("wikipedia", "UNRV"),
key = "ID", variable = c("Beg", "End"), category = c("conflict", "unique"))
plot(compare_categories(emperors, key = "ID"))
plot(compare_categories(datacube = emperors, dataset = c("wikipedia", "UNRV"),
key = "ID", variable = c("Beg", "End"), category = c("conflict", "unique")))

compare_diff Compare two datasets for differences

Description

Compare two datasets for differences

compare_diff 9

Usage

compare_new(.data1, .data2, by = "ID")

compare_diff(
.data1,
.data2,
by = "ID",
exclude = c("Title", "Coder", "Comments"),
diff_threshold = 0

)

Arguments

.data1 First dataset to compare

.data2 Second dataset to compare

by Column name to join on (default is "ID")

exclude Character vector of column names to exclude from comparison. By default,
"Title", "Coder", and "Comments" are excluded.

diff_threshold Integer specifying the minimum number of differing columns for a row to be
included in the output. Default is 0, meaning any difference will be included.
Set to 3 to only show rows with at least 3 differing columns.

Details

This function uses dplyr::anti_join to find rows in .data1 that are not present in .data2. If no
differences are found, a message is printed and NULL is returned. If differences are found, they are
returned as a data frame.

Value

A data frame with the differences found

Examples

Not run:
df1 <- data.frame(ID = 1:5, Value = letters[1:5])
df2 <- data.frame(ID = 3:7, Value = letters[3:7])
compare_new(df1, df2)
compare_new(df1, df1)

End(Not run)
compare_diff(emperors$Wikipedia, emperors$Britannica)

10 compare_dimensions

compare_dimensions Compare dimensions for ’many’ data

Description

Compare dimensions for ’many’ data

Usage

compare_dimensions(datacube, dataset = "all")

Arguments

datacube A datacube from one of the many packages.

dataset A dataset in a datacube from one of the many packages. By default, "all". That
is, all datasets in the datacube are used. To select two or more datasets, please
declare them as a vector.

Details

compare_dimensions() compares the number of observations, variables, the earliest date, and the
latest date in all observations for datasets in a ’many’ datacube.

Value

compare_dimensions() returns a tibble with information about each dataset including the number
of observations, the number of variables, the earliest date, and the latest date in all observations.

See Also

Other compare_: compare_categories(), compare_missing(), compare_overlap()

Examples

compare_dimensions(emperors)

compare_missing 11

compare_missing Compare missing observations for ’many’ data

Description

Compare missing observations for ’many’ data

Usage

compare_missing(datacube, dataset = "all", variable = "all")

Arguments

datacube A datacube from one of the many packages.

dataset A dataset in a datacube from one of the many packages. NULL by default. That
is, all datasets in the datacube are used. To select two or more datasets, please
declare them as a vector.

variable Would you like to focus on one, or more, specific variables present in one or
more datasets in the ’many’ datacube? By default "all". For multiple variables,
please declare variable names as a vector.

Details

compare_missing() compares the missing observations for variables in each dataset in a ’many’
datacube.

Value

compare_missing() returns a tibble with information about each dataset including the number of
observations, the number of variables, the earliest date, and the latest date in all observations.

See Also

Other compare_: compare_categories(), compare_dimensions(), compare_overlap()

Examples

compare_missing(emperors)
plot(compare_missing(emperors))

12 compare_overlap

compare_overlap Compare the overlap between datasets in ’many’ datacubes

Description

Compare the overlap between datasets in ’many’ datacubes

Usage

compare_overlap(datacube, dataset = "all", key = NULL)

Arguments

datacube A datacube from one of the many packages.

dataset A dataset in a datacube from one of the many packages. By default "all". That
is, all datasets in the datacube are used.

key A variable key to join datasets. ’manyID’ by default.

Details

compare_overlap() compares the overlap between "key" observations in each dataset in a ’many’
datacube.

Value

compare_overlap() returns a tibble with information about each dataset and the number of over-
lapping observations.

See Also

Other compare_: compare_categories(), compare_dimensions(), compare_missing()

Examples

compare_overlap(emperors, key = "ID")
plot(compare_overlap(emperors, key = "ID"))

consolidate 13

consolidate Consolidate datacube into a single dataset

Description

This function consolidates a set of datasets in a ’many*’ package datacube into a single dataset with
some combination of the rows, columns, and observations of the datasets in the datacube.

Usage

consolidate(
datacube,
join = c("full", "inner", "left"),
resolve = "coalesce",
key = NULL

)

Arguments

datacube A datacube from one of the many packages

join Which join procedure to use. By default "full" so that all observations are re-
tained, but other options include "left" for basing the consolidated dataset on
observations present in the first dataset (reorder the datasets to favour another
dataset), and "inner" for a consolidated dataset that includes only observations
that are present in all datasets.

resolve Choice how (potentially conflicting) values from shared variables should be re-
solved. Options include:

• "coalesce" (default): uses first non-NA value (if available) for each obser-
vation, essentially favouring the order the datasets are in in the datacube.

• "unite": combines the unique values for each observation across datasets as
a set (separated by commas and surrounded by braces), which can be useful
for retaining information.

• "random": selects values at random from among the observations from each
dataset that observed that variable, of particular use for exploring the impli-
cations of dataset-related variation.

• "precise": selects the value that has the highest precision from among the
observations from each dataset (see resolving_precision()), which favours
more precise data.

• "min", "max": these options return the minimum or maximum values re-
spectively, which can be useful for conservative temporal fixing.

To resolve variables by different functions, pass the argument a vector (e.g.
resolve = c(var1 = "min", var2 = "max")). Unnamed variables will be re-
solved according to the default ("coalesce").

14 describe

key An ID column to collapse by. By default "manyID". Users can also specify mul-
tiple key variables in a list. For multiple key variables, the key variables must be
present in all the datasets in the datacube (e.g. key = c("key1", "key2")). For
equivalent key columns with different names across datasets, matching is possi-
ble if keys are declared (e.g. key = c("key1" = "key2")). Missing observations
in the key variable are removed.

Details

The function includes separate arguments for the rows and columns, as well as for how to resolve
conflicts for observations across datasets. This provides users with considerable flexibility in how
they combine data. For example, users may wish to stick to units that appear in every dataset but
include variables coded in any dataset, or units that appear in any dataset but only those variables
that appear in every dataset. Even then there may be conflicts, as the actual unit-variable observa-
tions may differ from dataset to dataset. We offer a number of resolve methods that enable users to
choose how conflicts between observations are resolved.

Text variables are dropped for more efficient consolidation.

Value

A single tibble/data frame.

Examples

consolidate(emperors, join = "full", resolve = "coalesce", key = "ID")
consolidate(emperors, join = "inner", resolve = "min", key = "ID")
consolidate(emperors, join = "left", resolve = "max", key = "ID")

describe Data reports for datacubes and datasets with ’mdate’ variables

Description

These functions provide meta level descriptions of datacubes or datasets. mreport() creates a
properly formatted data report for datasets which contain ’mdate’ class objects, alongside other
object classes. describe_datacube() prints a text description of the datasets in a datacube.

Usage

mreport(data)

describe_datacube(datacube)

Arguments

data A {tibble} or a {data.frame}.

datacube A datacube

emperors 15

Details

’mreport’ displays the variable’s name, the variable type, the number of observations per variable,
the number of missing observations for variable, and the percentage of missing observations in
variable.

Value

A data report of class ’mreport’.

Examples

mreport(emperors)

emperors Emperors datacube documentation

Description

The emperors datacube is a list containing 3 datasets: Wikipedia, UNRV, and Britannica

Usage

emperors

Format

Wikipedia: A dataset with 68 observations and the following 15 variables: ID, Begin, End, Full-
Name, Birth, Death, CityBirth, ProvinceBirth, Rise, Cause, Killer, Dynasty, Era, Notes, Verif.

UNRV: A dataset with 99 observations and the following 7 variables: ID, Begin, End, Birth,
Death, FullName, Dynasty.

Britannica: A dataset with 87 observations and the following 3 variables: ID, Begin, End.

Details

#> $Wikipedia
#> --
#> | Variable | Class | Obs | Missing | Miss % |
#> --
#> |ID |character| 69| 0| 0|
#> |Begin |mdate | 69| 0| 0|
#> |End |mdate | 69| 0| 0|
#> |FullName |character| 68| 1| 1.45|
#> |Birth |mdate | 63| 6| 8.7|
#> |Death |mdate | 68| 1| 1.45|
#> |CityBirth |character| 51| 18| 26.09|
#> |ProvinceBirth|character| 68| 1| 1.45|
#> |Rise |character| 68| 1| 1.45|

16 emperors

#> |Cause |character| 68| 1| 1.45|
#> |Killer |character| 68| 1| 1.45|
#> |Dynasty |character| 68| 1| 1.45|
#> |Era |character| 68| 1| 1.45|
#> |Notes |character| 46| 23| 33.33|
#> --
#>
#>
#> $UNRV
#> ---
#> | Variable | Class | Obs | Missing | Miss % |
#> ---
#> |ID |character| 98| 0| 0|
#> |Begin |mdate | 98| 0| 0|
#> |End |mdate | 98| 0| 0|
#> |Birth |mdate | 74| 24| 24.49|
#> |Death |mdate | 98| 0| 0|
#> |FullName |character| 93| 5| 5.1|
#> |Dynasty |character| 61| 37| 37.76|
#> ---
#>
#>
#> $Britannica
#> ---
#> | Variable | Class | Obs | Missing | Miss % |
#> ---
#> |ID |character| 87| 0| 0|
#> |Begin |mdate | 87| 0| 0|
#> |End |mdate | 87| 0| 0|
#> ---

URL

• Wikipedia: https://en.wikipedia.org/wiki/List_of_Roman_emperors

• UNRV: https://www.unrv.com/government/emperor.php

• Britannica: https://www.britannica.com/place/list-of-Roman-emperors-2043294

Mapping

• wikipedia: Variable Mapping

from to
name ID

reign.start Begin
reign.end End
name.full FullName

birth Birth
death Death

https://en.wikipedia.org/wiki/List_of_Roman_emperors
https://www.unrv.com/government/emperor.php
https://www.britannica.com/place/list-of-Roman-emperors-2043294

filter_datacube 17

birth.cty CityBirth
birth.prv ProvinceBirth

rise Rise
cause Cause
killer Killer

dynasty Dynasty
era Era

notes Notes
verif.who Verif

• UNRV: Variable Mapping

from to
’Common Name’ ID

Beg Begin
’Full Name/Imperial Name’ FullName

’Dynasty/Class/Notes’ Dynasty

• britannica: Variable Mapping

from to
Name ID

reign_start Begin
reign_end End

Source

• Wikipedia, ’List_of_Roman_emperors’, https://en.wikipedia.org/wiki/List_of_Roman_emperors,
Accessed on 2021-07-22.

• United Nations of Roma Victrix, ’Roman Emperor list’, https://www.unrv.com/government/emperor.php,
Accessed on 2021-07-22.

• Britannica, ’List of Roman emperors’, https://www.britannica.com/topic/list-of-Roman-emperors-
2043294, Accessed on 2021-07-22.

filter_datacube Filtering datacube datasets to a certain date

Description

Filtering datacube datasets to a certain date

Usage

filter_datacube(datacube, date = Sys.Date())

18 find_year

Arguments

datacube A datacube, i.e. a list of data frames with Begin and End date variables.

date A date (of class Date or character) at which to filter the datacube.

Examples

filter_datacube(emperors, date = "0100")

find Find elements within manydata

Description

Find elements within manydata

Usage

find_ID(df, id_col = "ID")

find_common_ID(..., id_col = "ID")

find_duplicates(df, id_col = "ID")

Arguments

df A data frame to be scored.

id_col The name of the column containing IDs. Default is "ID".

... Data frames to compare

Examples

find_duplicates(emperors$Wikipedia)

find_year Creates Numerical IDs from Signature Dates

Description

Agreements should have a unique identification number that is meaningful, we condense their sig-
nature dates to produce this number.

Usage

find_year(date)

pluck 19

Arguments

date A date variable

Value

A character vector with condensed dates

Examples

Not run:
IEADB <- dplyr::slice_sample(manyenviron::agreements$IEADB, n = 10)
code_dates(IEADB$Title)

End(Not run)

pluck Selects a single dataset from a datacube

Description

This function is reexported/wrapped from the {purrr} package. It allows users to select a single
dataset from one of the datacubes available across the ’many* packages’. It additionally invites
users to cite the selected dataset.

Usage

pluck(.x, ..., .default = NULL)

Arguments

.x The datacube

... The name of the dataset in the datacube

.default Value to use if target is NULL or absent.

Value

The selected dataset

Examples

pluck(emperors, "UNRV")

20 repaint

recollect Pastes unique string vectors

Description

For use with dplyr::summarise, for example

Usage

recollect(x, collapse = "_")

Arguments

x A vector

collapse String indicating how elements separated

Details

This function operates similarly to reunite, but instead of operating on columns/observations, it
pastes together unique rows/observations.

Value

A single value

Examples

data <- data.frame(ID = c(1,2,3,3,2,1))
data1 <- data.frame(ID = c(1,2,3,3,2,1), One = c(1,NA,3,NA,2,NA))
recollect(data$ID)
recollect(data1$One)

repaint Fills missing data by lookup

Description

Fills missing data where known by other observations with the same id/index

Usage

repaint(df, id, var)

resolving 21

Arguments

df a dataframe
id a string identifying a column in the dataframe for indexing
var a string identifying a column or columns in the dataframe to be filled

Value

A dataframe

Examples

data <- data.frame(ID = c(1,2,3,3,2,1),
One = c(1,NA,3,NA,2,NA),
Two = c(NA,"B",NA,"C",NA,"A"))

repaint(data, "ID", c("One","Two"))

resolving Resolving multiple observations of the same variable into one

Description

This family of functions provides row-wise summarization for data frames or tibbles, returning a
single value per row based on specified columns. They are useful for tasks like extracting typical or
summary values from multiple variables, simplifying wide data structures, and imputing represen-
tative values.

Usage

resolve_unite(.data, vars, na.rm = TRUE)

resolve_coalesce(.data, vars)

resolve_min(.data, vars, na.rm = TRUE)

resolve_max(.data, vars, na.rm = TRUE)

resolve_random(.data, vars, na.rm = TRUE)

resolve_precision(.data, vars)

resolve_mean(.data, vars, na.rm = TRUE)

resolve_mode(.data, vars, na.rm = TRUE)

resolve_median(.data, vars, na.rm = TRUE)

resolve_consensus(.data, vars, na.rm = TRUE)

22 resolving

Arguments

.data A data frame or tibble containing the variables.

vars A vector of variables from .data to be resolved or converged. If this argument
is left unspecified, then all variables will be merged together.

na.rm Logical whether missing values (NAs) should be removed before operation of
the function. Note that unlike how the na.rm argument operates in functions in
base R, e.g. max(), here the default is TRUE.

Unite

Uniting returns all the unique values as a set, separated by commas and contained within braces.
Note that uniting always returns a character/string vector, which enables it to accommodate different
classes of variables. The order of the values reflects their first appearance; that is, they are not
ordered by increasing value.

Coalesce

Coalescing returns a vector of the first non-missing values found when reading the variables from
left to right. That is, missing values in the first vector may be filled by observations in the second
vector, or later vectors if the second vector also misses an observation for that cell. Variables can
be reordered manually.

Min and Max

These functions return a vector containing each row’s minimum or maximum value. Note that these
functions work not only on numeric and date vectors, but also on character string vectors. For
character data, these functions will return the shortest or longest strings, respectively, in each row.

Random

This function returns a vector of values selected randomly from among the values contained in each
row. Note that by default na.rm = TRUE, which means that missing data will not be selected at
random by default, which can also change the probability distribution by each row. Where na.rm =
FALSE, the probability of each value being selected is uniform.

Precision

This function returns a vector that maximises the precision of the values in each row. For numeric
vectors, precision is expressed in significant digits, such that 1.01 would be more precise than 1.
For character vectors, precision is expressed in terms of the character length proportional to the max
character length in the row. This applies also to messydates, meaning precision is expressed in the
lowest level date component specified, such that 2008-10 would be more precise than 2008, and
2008-10-10 would be more precise still.

Mean and median

These functions return a vector of the means or medians, respectively, of the values in each row.

reunite 23

Consensus

This function returns a vector of consensus values, i.e. where there is no variation in values by each
row. If the values (excluding missing values by default) are not equivalent, then an NA is returned
for that row.

Examples

test <- data.frame(preferred_dataset = c(1,6,NA),
more_comprehensive = c(1,3,3),
precise_where_available = c(NA,3.3,4.1))

test
resolve_unite(test)
resolve_coalesce(test)
resolve_min(test)
resolve_max(test)
resolve_random(test)
resolve_precision(test)
resolve_mean(test)
resolve_mode(test)
resolve_median(test)
resolve_consensus(test)

reunite Pastes unique string vectors

Description

A vectorised function for use with dplyr’s mutate, etc

Usage

reunite(..., sep = "_")

Arguments

... Variables to pass to the function, currently only two at a time

sep Separator when vectors reunited, by default "_"

Value

A single vector with unique non-missing information

Examples

data <- data.frame(fir=c(NA, "two", "three", NA),
sec=c("one", NA, "three", NA), stringsAsFactors = FALSE)

transmutate(data, single = reunite(fir, sec))

24 scores

scores Scoring Functions for Data Quality Checks

Description

A set of functions to assess various aspects of data quality. including a comprehensive dataset score
as well as individual scores for specific data quality dimensions such as date consistency, duplicates,
recency, frequency, time, coding, comments, sources, missing values, and variables.

According to the literature, data quality can be assessed by checking for consistency, completeness,
accuracy, timeliness, and uniqueness of the data. Consistency means that the data is logically co-
herent, completeness means that all required data is present, accuracy means that the data is correct
and reliable, timeliness means that the data is up-to-date, and uniqueness means that there are no
duplicate records.

Usage

score_dataset(df)

score_obs_no(df)

score_var_no(df)

score_completeness(df)

score_date_consistency(df)

score_date_scope(df)

score_obs_info(df, id_col = "ID")

score_coding(df)

score_comments(df)

score_var_info(df)

Arguments

df A data frame to be scored.

id_col The name of the column containing IDs. Default is "ID".

Details

These functions are designed to help assess the quality of data in a data frame. Each function checks
a specific aspect of the data and returns a score or a message indicating the quality of that aspect.
The functions include:

transmutate 25

• score_date_consistency: Proportion of invalid date pairs (End <= Begin).
• score_duplicates: Proportion of duplicate IDs.

References

Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data con-
sumers. Journal of Management Information Systems, 12(4), 5-34.

Examples

score_dataset(emperors)
score_obs_no(emperors)
score_var_no(emperors)
score_completeness(emperors)
score_date_consistency(emperors)
score_date_scope(emperors)
score_obs_info(emperors)
score_var_info(emperors)

transmutate Drop only columns used in formula

Description

A function between dplyr’s transmute and mutate

Usage

transmutate(.data, ...)

Arguments

.data Data frame to pass to the function

... Variables to pass to the function

Value

Data frame with mutated variables and none of the variables used in the mutations, but, unlike
dplyr::transmute(), all other unnamed variables.

Source

https://stackoverflow.com/questions/51428156/dplyr-mutate-transmute-drop-only-the-columns-used-
in-the-formula

Examples

pluck(emperors, "Wikipedia")
transmutate(emperors$Wikipedia, Beginning = Begin)

Index

∗ call_
call_packages, 2
call_releases, 3
call_treaties, 5

∗ compare_
compare_categories, 7
compare_dimensions, 10
compare_missing, 11
compare_overlap, 12

∗ datasets
emperors, 15

call_citations (call_sources), 4
call_packages, 2, 4, 5
call_releases, 3, 3, 5
call_sources, 4
call_treaties, 3, 4, 5
code_extend, 6
code_extend_bert (code_extend), 6
code_extend_glove (code_extend), 6
compare_categories, 7, 10–12
compare_diff, 8
compare_dimensions, 8, 10, 11, 12
compare_missing, 8, 10, 11, 12
compare_new (compare_diff), 8
compare_overlap, 8, 10, 11, 12
consolidate, 13

describe, 14
describe_datacube (describe), 14

emperors, 15

filter_datacube, 17
find, 18
find_common_ID (find), 18
find_duplicates (find), 18
find_ID (find), 18
find_year, 18

mreport (describe), 14

pluck, 19

recollect, 20
repaint, 20
resolve_coalesce (resolving), 21
resolve_consensus (resolving), 21
resolve_max (resolving), 21
resolve_mean (resolving), 21
resolve_median (resolving), 21
resolve_min (resolving), 21
resolve_mode (resolving), 21
resolve_precision (resolving), 21
resolve_random (resolving), 21
resolve_unite (resolving), 21
resolving, 21
reunite, 23

score_coding (scores), 24
score_comments (scores), 24
score_completeness (scores), 24
score_dataset (scores), 24
score_date_consistency (scores), 24
score_date_scope (scores), 24
score_obs_info (scores), 24
score_obs_no (scores), 24
score_var_info (scores), 24
score_var_no (scores), 24
scores, 24

transmutate, 25

26

	call_packages
	call_releases
	call_sources
	call_treaties
	code_extend
	compare_categories
	compare_diff
	compare_dimensions
	compare_missing
	compare_overlap
	consolidate
	describe
	emperors
	filter_datacube
	find
	find_year
	pluck
	recollect
	repaint
	resolving
	reunite
	scores
	transmutate
	Index

