the creation of a grouped hyper data frame with one-and-only-one point-pattern hypercolumn;
the batch process on eligible marks for the one-and-only-one point-pattern hypercolumn in a (grouped) hyper data frame;
the computation of various summary statistics from one or more function-value-table hypercolumn(s) of a (grouped) hyper data frame;
the aggregation of summary statistics, over a (nested) grouping structure, in a grouped hyper data frame.
The complete vignette exceeds the file size limit allowed on CRAN.
1 Prerequisite
1.1 Environment
Package groupedHyperframe (v0.3.0) requires R version 4.5.0 (released 2025-04-11) or higher (macOS, Windows, Linux).
An Integrated Development Environment (IDE), e.g., RStudio(Posit team 2025) or Positron, is not required, but highly recommended.
Environment on author’s computer
Sys.info()[c('sysname', 'release', 'machine')]# sysname release machine # "Darwin" "25.1.0" "arm64"R.version# _ # platform aarch64-apple-darwin20 # arch aarch64 # os darwin20 # system aarch64, darwin20 # status # major 4 # minor 5.1 # year 2025 # month 06 # day 13 # svn rev 88306 # language R # version.string R version 4.5.1 (2025-06-13)# nickname Great Square Root
1.2 Enhancement & Dependency
Package groupedHyperframe (v0.3.0) Enhances the spatstat.* family of packages (Baddeley, Rubak, and Turner 2015; Baddeley and Turner 2005), especially spatstat.geom and spatstat.explore. Details are provided in the complete vignette, Section 4.1.
The dependencies of package groupedHyperframe are detailed in the complete vignette, Section 4.1.
Package groupedHyperframe requires the development versions of the spatstat.* family of packages. Installation instructions are provided in the complete vignette, Section 4.1.
1.3 Installation
Package groupedHyperframe (v0.3.0) can be installed using the following command.
Package groupedHyperframe (v0.3.0) plays a pivotal role in these peer reviewed publications from the authors.
3.1Zhan, Yi, and Chervoneva (2025)
Zhan T, Yi M, Chervoneva I (2025). “Quantile Index predictors using R package hyper.gam.” Bioinformatics, 41(8), btaf430. ISSN 1367-4811, doi:10.1093/bioinformatics/btaf430 https://doi.org/10.1093/bioinformatics/btaf430.
Warning in citation(package = "groupedHyperframe"): could not determine year
for 'groupedHyperframe' from package DESCRIPTION file
@Article{,
title = {Quantile Index predictors using R package `hyper.gam`},
author = {Tingting Zhan and Misung Yi and Inna Chervoneva},
journal = {Bioinformatics},
volume = {41},
number = {8},
pages = {btaf430},
year = {2025},
month = {07},
issn = {1367-4811},
doi = {10.1093/bioinformatics/btaf430},
}
@Manual{,
title = {groupedHyperframe: Grouped Hyper Data Frame: An Extension of
Hyper Data Frame},
author = {Tingting Zhan and Inna Chervoneva},
note = {R package version 0.3.0},
url = {https://github.com/tingtingzhan/groupedHyperframe},
}
as well as Yi et al. (2025); Yi et al. (2023b); Yi et al. (2023a), was featured with a hyper data frame Ki67q with a numeric-hypercolumn logKi67.quantile. Functions in the R code-chunk below are explained in the complete vignette.
R code in Zhan, Yi, and Chervoneva (2025)
Ki67q = groupedHyperframe::Ki67 |>within.data.frame(expr = { x = y =NULL# remove x- and y-coords for non-spacial application }) |>as.groupedHyperframe(group =~ patientID/tissueID) |>quantile(probs =seq.int(from = .01, to = .99, by = .01)) |>aggregate(by =~ patientID)
Readers are encouraged to learn more about this application from package hyper.gam(Zhan and Chervoneva 2025, CRAN, Github)vignette, section Quantile Index.
4 Acknowledgement
This work is supported by National Institutes of Health, U.S. Department of Health and Human Services grants
Baddeley, Adrian, and Rolf Turner. 2005. “spatstat: An R Package for Analyzing Spatial Point Patterns.”Journal of Statistical Software 12 (6): 1–42. https://doi.org/10.18637/jss.v012.i06.
Posit team. 2025. RStudio: Integrated Development Environment for R. Boston, MA: Posit Software, PBC. https://posit.co/.
Yi, Misung, Tingting Zhan, Amy R. Peck, Jeffrey A. Hooke, Albert J. Kovatich, Craig D. Shriver, Hai Hu, Yunguang Sun, Hallgeir Rui, and Inna Chervoneva. 2023a. “Quantile Index Biomarkers Based on Single-Cell Expression Data.”Laboratory Investigation 103 (8): 100158. https://doi.org/10.1016/j.labinv.2023.100158.
———. 2023b. “Selection of Optimal Quantile Protein Biomarkers Based on Cell-Level Immunohistochemistry Data.”BMC Bioinformatics 24 (1): 298. https://doi.org/10.1186/s12859-023-05408-8.
Yi, Misung, Tingting Zhan, Hallgeir Rui, and Inna Chervoneva. 2025. “Functional Protein Biomarkers Based on Distributions of Expression Levels in Single-Cell Imaging Data.”Bioinformatics, April, btaf182. https://doi.org/10.1093/bioinformatics/btaf182.
Zhan, Tingting, Misung Yi, and Inna Chervoneva. 2025. “Quantile Index Predictors Using r Package ‘Hyper.gam‘.”Bioinformatics, July, btaf430. https://doi.org/10.1093/bioinformatics/btaf430.