Package ‘eye’

September 26, 2025

Title Analysis of Eye Data
Version 1.3.0

Description There is no ophthalmic researcher who has not had headaches from
the handling of visual acuity entries. Different notations, untidy entries.
This shall now be a matter of the past. Eye makes it as easy as pie to work
with VA data - easy cleaning, easy conversion between
Snellen, logMAR, ETDRS letters, and qualitative visual acuity
shall never pester you again. The eye
package automates the pesky task to count number of patients and eyes,
and can help to clean data with easy re-coding for right and left eyes.

It also contains functions to help reshaping eye side specific variables
between wide and long format. Visual acuity conversion is based on
Schulze-Bonsel et al. (2006) <doi:10.1167/i0vs.05-0981>,

Gregori et al. (2010) <doi:10.1097/iae.0b013e3181d87e04>,

Beck et al. (2003) <doi:10.1016/s0002-9394(02)01825-1> and

Bach (2007) <https://michaelbach.de/sci/acuity.html>.

License MIT + file LICENSE
URL https://github.com/tjebo/eye

BugReports https://github.com/tjebo/eye/issues
Language en-US

Encoding UTF-8

RoxygenNote 7.3.3

VignetteBuilder knitr

Depends R (>=4.5)

Imports cli (>=3.6.5), dplyr (>= 1.1.4), english (>= 1.2-6),
lubridate (>= 1.9.4), magrittr (>= 2.0.4), pillar (>=1.11.1),
purrr (>= 1.1.0), rlang (>= 1.1.6), stringr (>= 1.5.2), tibble
(>=3.3.0), tidyr (>= 1.3.1), tidyselect (>= 1.2.1)

Suggests eyedata (>= 0.1.0), knitr (>= 1.50), rmarkdown (>= 2.29),
testthat (>= 3.2.3)

NeedsCompilation no

https://doi.org/10.1167/iovs.05-0981
https://doi.org/10.1097/iae.0b013e3181d87e04
https://doi.org/10.1016/s0002-9394(02)01825-1
https://michaelbach.de/sci/acuity.html
https://github.com/tjebo/eye
https://github.com/tjebo/eye/issues

2 blink

Author Tjebo Heeren [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5297-2301>),
Antoine Fabri [ctb]

Maintainer Tjebo Heeren <tjebo@gmx.de>
Repository CRAN
Date/Publication 2025-09-26 17:20:02 UTC

Contents
blink 2
BYCS . vt e e e e e e e e e e e e e e e e e 5
GELAZE e e e e e e e e e e e e 7
hyperop 8
IYOP « « v o e e e e e e e e e e e e e e e e 9
parse_snelleno 10
print_methods L e 11
TECOdEYE L e e e e e 12
reveal ... e 13
SEL_EYE_SIINGS o i e e e e e e e e e 14
snellen_Steps e 16
VA Lot e e e e e e 16
VAWIapper e e e e 20
va_mixed e e 21

Index 23

blink Your data in a blink of an eye
Description

blink summarizes your data tailored to the need of ophthalmic research: It looks for VA and IOP
columns and summarises those with common statistics. In order to make it work, it requires specific
column naming - please see section "column names" and "data coding". For more details how blink
works, see vignette("eye")

Usage

blink(x, va_to = "logmar”, va_cols = NULL, iop_cols = NULL, fct_level = 0:4)

Arguments
X data frame
va_to to which VA notation (passed to va())

va_cols if specified, overruling automatic VA columns selection. tidyselection supported

https://orcid.org/0000-0001-5297-2301

blink 3

iop_cols if specified, overruling automatic IOP columns selection. tidyselection sup-
ported
fct_level Remove columns for Summarizing when all unique values fall into range. char-

acter or numeric vector, default 1:4

Details

blink is basically a wrapper around myop, eyes and reveal:

* Duplicate rows are always removed
* Column names are prepared for myopization (see myop)

* VA will always be converted to logmar

Value

object of class blink and 1ist. Class blink contains the myopized data, count of patients and eyes,
and summaries for visual acuities and intraocular pressure.

Data coding

* Only common codes supported:
e eyes: "r", "re", "od", "right" - or numeric coding r:1 = 0:1 or 1:2
* Visual acuity: "VA", "BCVA", "Acuity"

* Intraocular pressure: "[OP", "GAT", "NCT", "pressure"

Column name rules

* No spaces!
* Do not use numeric coding for eyes in column names

* Separate eye and VA and IOP codes with underscores ("bcva_l_preop"”, "VA_r", "left_va",
"IOP_re")

* Avoid separate VA or IOP codes if this is not actually containing VA/ IOP data (e.g. "stabl-
eVA" instead of "stable_va", ChangelOP instead of "change_IOP")

* Keep names short

* Don’t use underscores when you don’t have to. Consider each section divided by an under-
score as a relevant characteristic of your variable. ("preop" instead of "pre_op", "VA" instead
of "VA_ETDRS_Letters")

non

» Use common codes for your patient column (see eyes, section Guessing) (e.g., "pat", "patient"
or "ID", ideally both: "patientID" or "patID")

* Don’t be too creative with your names!

4 blink

Names examples

Good names:
-c("patid”, "surgery_right"”, "iop_r_preop”, "va_r_preop”, "iop_r", "iop_1")
OK names

-c("Id", "Eye", "BaselineAge"”, "VA_ETDRS_Letters”, "InjectionNumber"): Names are long
and there are two unnecessary underscore in the VA column. Better just "VA" -c("id", "r", "1"):
All names are commonly used (good!), but which dimension of "r"/"]l" are we exactly looking at?

Bad names (eye will fail)
e c("id", "iopr”, "iopl"”, "VAr", "VA1"): eye won’t be able to recognize IOP and VA
columns

e c("id", "iop_r", "iop_1", "stable_iop_r", "stable_iop_1"): eye may wrongly iden-
tify the (probably logical) columns "stable_iop" as columns containing IOP data. Better
maybe: "stableIOP_1"

e c("person”, "goldmann”, "vision"): eye will not recognize that at all

tidy data

blink and myop work more reliably with clean data (any package will, really!). clean data.

column removal

Done with remCols: Removes columns that only contain values defined in fct_levels or logicals
from selected columns (currently for both automatically and manually selected columns). fct_levels
are removed because they are likely categorical codes.

See Also

About tidyselection.

How to rename your columns (two threads on stackoverflow.com):

¢ Rename columns 1

e Rename columns 2

Examples

library(eyedata)
blink(amd2)

messy_df <- data.frame(id = letters[1:3],

iop_r_preop = sample(21:23), iop_r_postop = sample(11:13),
iop_l_postop = sample(11:13), iop_l_preop = sample(31:33),
va_r_preop = sample(41:43), va_l_preop = sample(41:43),
va_r_postop = sample(51:53), va_l_postop = sample(45:47)

)

blink(messy_df)

https://tidyr.tidyverse.org/articles/tidy-data.html
https://tidyselect.r-lib.org/reference/language.html
https://stackoverflow.com/questions/7531868/how-to-rename-a-single-column-in-a-data-frame
https://stackoverflow.com/questions/20987295/rename-multiple-columns-by-names/59567220#59567220

eyes 5

eyes Count patients and eyes

Description

Counts number of subjects and right and left eyes. Columns are guessed.

Usage

eyes(x, id_col = NULL, eye_col = NULL, dropunknown = TRUE, details = FALSE)

eyestr(x, ..., english = "small"”, caps = FALSE)
Arguments

X required. (data frame)

id_col Subject identifying column, passed as (quoted) character Can also be abbrevi-
ated to "id" as per partial matching

eye_col Eye identifying column, passed as (quoted) character. Can also be abbreviated
to "eye" as per partial matching

dropunknown introduces NA for values not recognized by recodeye

details if TRUE, will add information about which and how many subjects have only

one eye or both included, and provide a list of subject IDs for each

passed to eyes

english Which numbers to be written in plain english: choose "small" for numbers till
12, "all" (all numbers), or "none" (or any other string!) for none
caps if TRUE, first number will have capital first letter
Value

List (of class "eyes" with count of patients and eyes if "details = TRUE", an list of class "eyes_details"
will be returned

eyestr: Character string - can be directly pasted into reports

Column guessing

id_col and eye_col arguments overrule the name guessing for the respective columns (here, cases
need to match). Both arguments can be abbreviated (id or eye) as per partial argument name match-
ing.

For any below, cases are always ignored (column names can be in upper or lower case, as you
please)

patient ID columns:

* First, eyes is looking for names that contain both strings "pat" and "id" (the order doesn’t
matter) - you can change this with set_eye_strings

6 eyes

* Next, it will look for columns that are plainly called "ID"

* Last, it will search for all names that contain either "pat" or "id"
eye column:

* eyes primarily looks for columns called either "eye" or "eyes", (you can change this with
set_eye_strings) and if they are not present, columns containing string "eye" (e.g., EyeName
will be recognized)

Eye coding
The following codes are recognized: (change this with set_eye_strings)

* integer coding 0:1 and 1:2, right eye being the lower number.
* right eyes: c("r", "re", "od", "right") and
* left eyes: c("1", "le", "os", "left") and

* both eyes: c¢("b", "both", "ou")

If your eye column contains other values, they will be dropped to NA (dropunknown) or kept (and
then only patients will be counted, because coding remains unclear). Recommend then to recode
with recodeye

eyestr

eyestr creates a string which can be pasted into reports. It currently only supports "x eyes of n
patient(s)" This is a limitation, but I guess in the vast majority of cases will be "correct". To use for
other categories (e.g., "people" or "participants"), use eyes(...)[1]

Examples

library(eyedata)
eyes(amd2)

If you code your eyes with different strings,

e.g., because you are using a different language,

you can change this either with “set_eye_strings”
set_eye_strings(right = c("droit”, "od"), left = c("gauche”, "og"))

restore defaults with
set_eye_strings()

Examples for the usage of eyestr
eyestr(amd2)

set.seed(1)
1s_dat <-
lapply(c(1, 12, 13),
function(x) data.frame(id = as.character(1:x),
eye = sample(c("r", "1"), x, replace = TRUE)))

lapply(ls_dat, eyestr, english "small")
lapply(ls_dat, eyestr, english = "all")

getage

lapply(ls_dat, eyestr, english = "all", caps = TRUE)
lapply(ls_dat, eyestr, english "none")
lapply(ls_dat, eyestr, english = "none")

getage getage

Description

calculates age in years, as durations or periods

Usage

getage(from_date, to_date = lubridate::now(), period = FALSE, dec = 1)

Arguments
from_date start date
to_date end date
period Calculating period (TRUE) or duration (FALSE- default)
dec How many decimals are displayed
Value

Numeric vector

Author(s)

Antoine Fabri and Tjebo Heeren

See Also

OP on stackoverflow from which this function was inspired. Read about periods and durations

Examples

getage("1984-10-16")

dob <- ¢("1984-10-16", "2000-01-01")
test_date <- as.Date(dob) + c(15000, 20000)
getage(dob, test_date)

https://stackoverflow.com/a/47529507/7941188
https://lubridate.tidyverse.org/articles/lubridate.html#time-intervals

8 hyperop

hyperop Hyperopic eye data

Description

Pivot eye-related variables to two columns

Usage

hyperop(x, cols, eye = NULL)

Arguments
X data frame
cols columns which should be made "wide". Tidyselection supported
eye eye column (default looking for "eye" or "eyes", all cases)
Details

Basically the opposite of myop() - a slightly intelligent wrapper around tidyr: :pivot_longer()
and tidyr::pivot_wider() Will find the eye column, unify the codes for the eyes (all to "r" and
"I'") and pivot the columns wide, that have been specified in "cols".

Good names and tidy data always help!

For more information about shaping data and good names, see vignette("”eye"), or ?blink or
?myop

Value

A tibble, see also tibble::tibble

See Also

About tidyselection

Examples

Example to clean a bit messy data frame

iopva <- data.frame(
id = c("a", "e", "j", "h"),
va_r = c(37L, 36L, 33L, 38L),
iop_r = c(38L, 40L, 33L, 34L),
va_l = c(30L, 39L, 37L, 40L),
iop_l = c(31L, 34L, 33L, 31L)
)
myop_iop <- myop(iopva)
hyperop(myop_iop, cols = matches("val|iop"))

https://tidyselect.r-lib.org/reference/language.html

myop 9

myop Myopic eye data

Description

Pivot "eye" variable to one column

Usage
myop(x, var = "value")
myopic(x, var = "value”)
Arguments
X data frame
var Character vector of length 1 specifying the variable if there is only one column
per eye with no further info on the variable (default "value")
Details

Out of convenience, data is often entered in a very "wide" format: there will be two columns for the
same variable, one column for each eye. myop will pivot the eye variable to one column and keep
all other variables wide. E.g., eight columns that store data of four variables for two eyes will be
pivoted to 5 columns (one eye and four further variable columns, see also examples).

myop requires a specific data format

If there is a column called "eye" or "eyes", myop will not make any changes - because the data is
then already assumed to be in long format. If you also have columns with eye-specific values, then
you have messy data. Maybe, you could remove or rename the "eye" column and then let myop do
the work.

myop will only recognize meaningful coding for eyes:

"o

* Righteyes: "r", "re", "od", "right"
° Left eyes: Nl”’ ”le”’ HO‘YV!’ Hleﬁll

* for other codes see also eye_codes The strings for eyes need to be separated by period or
underscores. (Periods will be replaced by underscores). Any order is allowed.

"non "non "non

» Will work: "va_r", "right_morningpressure”, "night_iop.le", "gat_os_postop"

Will fail: "VAr", "rightmorningPressure”, "night_IOPle", "gatOSpostop"

An exception is when there is only one column for each eye. Then the column names can consist
of eye strings (see above) only. In this case, var will be used to "name" the resulting variable.

If there are only eye columns in your data (should actually not happen), myop will create identifiers
by row position.

Please always check the result for plausibility. Depending a lot on how the data was entered,
the results could become quite surprising. There is basically a nearly infinite amount of possible
combinations of how to enter data, and it is likely that myop will not be able to deal with all of them

10 parse_snellen

Value

A tibble, see also tibble::tibble

internal preparation

non "non

* Rename data names with myop_rename, replacing "." with "_

* Use of sort_substr() - sorting eye strings first, then strings coding for methods (IOP/VA),
then the rest.

myopization

The actual work is done with myopizer and myop_pivot

Examples

Example to clean a bit messy data frame
iopva <- data.frame(
id = c("a", "e", "j", "h"),
va_r = c(37L, 36L, 33L, 38L),
iop_r = c(38L, 4eL, 33L, 34L),
va_l = c(30L, 39L, 37L, 40L),
iop_1 = c(31L, 34L, 33L, 31L)
)
myop(iopva)

iop_wide <- data.frame(id = letters[1:3], r = 11:13 , 1 = 14:16)
the variable has not been exactly named, so you can specify

it with the var argument

myop (iop_wide, var = "iop")

parse_snellen parsing snellen fractions to numeric values

Description

parsing snellen fractions to numeric values

Usage

parse_snellen(y)

Arguments

y vector

print_methods 11

print_methods print eye classes

Description

S3 methods for VA classes "snellen", "logmar" and "etdrs". snellen is always also a character class-
because it is more categorical than continuous. logmar and etdrs are both numerics (logMAR is
double, etdrs is integer).

S3 methods for class blink
S3 methods for class eyes

S3 methods for class eyes_details

Usage

S3 method for class 'snellen'
print(x, ...)

S3 method for class 'logmar'
print(x, ...)

S3 method for class 'etdrs'
print(x, ...)

S3 method for class 'blink'
print(x, ...)

S3 method for class 'eyes'
print(x, ...)

S3 method for class 'eyes_details'

print(x, show = 6, ...)
Arguments
X object of class "eyes_details"

arguments passed to print.default

show how many subjects to be shown before printing the footnote

Value

No return value, called for side effects (printing)

12 recodeye

recodeye Recode eyes

Description

recoding eyes to "r" and "1"

Usage

recodeye(x, to = NULL, eyestrings = NULL, dropunknown = TRUE)

Arguments
X vector of strings
to named vector to which eye codes. If unnamed, this order: c(r, 1, b)
eyestrings named list of substrings which should be converted to right and left eyes - if
passed unnamed, this order: list(r, 1, b)
dropunknown introduces NA for values that are not part of eyestrings
Value

Character vector

string detection

recodeye will automatically detect the following strings: right = c("r", "re", "od", "right"), left =
C(”l”, Hleﬂ’ HOS"’ “left"), bOth - C(Hbll,”bothﬂ’ﬂou")

You can change this with set_eye_strings

to and eyecode arguments

If passed, should ideally be of same length, and have the respective eyes at the same index (or with
the same name!). If the lengths are not equal, e.g., if only "to" is passed with n elements, the shorter
argument will be will be cut down to the first n elements of the longer argument.

Note that all unique strings which are part of the column should be contained in the "eyecode"
argument.

numeric coding

Currently numeric coding only accepts binary coding (right and left eye). In order to use numeric
coding for "both eyes" as well, a workaround using the eyestrings argument is suggested.

See Also

Other string matching functions: getElem, sort_substr(), str_search

reveal 13
Examples
x <= c("r", "re”, "od”, "right”, "1", "le", "os", "left”, "both”, "ou")
recodeye(x)
chose the resulting codes
recodeye(x, to = c("od”, "os", "ou"))
x <-1:2
recodeye(x)
If you code your eyes with different strings,
e.g., because you are using a different language,
you can change this either with the eyestrings argument,
french <- c(”0D”, "droit"”, "gauche”, "0G")
recodeye(french, eyestrings = list(r = c("droit”, "od"), 1 = c("”gauche”, "o0g")))
or change it more globally with “set_eye_strings”
set_eye_strings(right = c("droit”, "od"), left = c("gauche”, "og"))
recodeye(french)
restore defaults with
set_eye_strings()
reveal reveal
Description
Shows commonly used summary statistics
Usage
reveal(x, by = NULL, dec = 1, funs = NULL)
Arguments
X data frame, numeric vector, or list of numeric vectors
by character vector with the names of the columns. Can be several variables!
dec how many decimals are displayed
funs not really meant to be used at the moment - change the Summarizing functions
with a named(!) list of functions
Details

Character vectors (or character columns) will be removed.

Value

data frame

14 set_eye_strings

See Also

Other revealer: reveal_methods, reveal_split()

Examples

X =y =z = c(rnorm(20), NA)

mylist <- list(x = x, y =y, z = z)

vectors

reveal (x)

reveal (1:10)

named or unnamed list

reveal (mylist)

set.seed(42)

mydf <- cbind(group = rep(letters[1:3], 4),
setNames(as.data.frame(replicate(c(rnorm(11), NA), n = 3)), letters[24:26]))
data frames

reveal (mydf)

data frames by group

reveal (mydf, by = "group”)

set_eye_strings Set list of codes

Description

This sets the list of codes used throughout the eye package for the coding of all kind of stuff. If
you want to change recognized codes, this is the place to do it. See examples below how to easily
overwrite it. It is important that you must pass them as a character vector!

cases are always ignored, so you don’t need to worry about this bit.

Usage

set_eye_strings(
right = c("r”, "re”, "od”, "right"),
left = c("1", "le", "os", "left"),
both = c("b"”, "both", "ou"),
iop = c("iop”, "gat”, "nct"),
iop_partial = c("pressure”),
va = c("va”, "bcva"),
va_method = c("etdrs"”, "snellen”, "logmar"),
va_partial = c("acuit”),
id = c("pat”, "id"),
eye = c("eye”, "eyes"),
nlp = c("nlp”, "no light perception”, "no light”, "no perception of light”, "npl”),
1p = c("1p”, "light perception”, "perception of light”, "pl"),
hm = c¢(”"hm”, "handmotion”, "hand movement”, "hand movements"),
cf = c("cf”, "counting finger”, "counting fingers"”, "finger count”, "count fingers"),

set_eye_strings

Arguments

right

left

both

iop
iop_partial
va

va_method

va_partial
id

eye

nlp

1p

hm

cf

Details

15

right eyes

left eyes

both eyes

IOP codes

partial strings used to find IOP columns
VA codes

VA methods (used to recognize VA columns - when those strings occur "fully",
i.e., not as part of sth else)

Also used to find VA columns - looking for partial strings
patient column codes

eye column codes

VA values recognised as "No light perception”

VA values recognised as "light perception”

VA values recognised as "hand movement"

VA values recognised as "count fingers"

currently not used, but might be needed in the future

Beware, setting the recognised strings will fully overwrite previously recognised ones. If you want
to keep all, you need to write them all out.

Restoring the defaults

To restore the defaults, simply call set_eye_strings empty

Examples

To expand recognized codes for eyes, e.g. if you want to use French names
set_eye_strings(right = c("droit”, "od"), left = c("gauche”, "og"))

To restore the defaults, simply call set_eye_strings empty

set_eye_strings()

16 va

snellen_steps Convert plus minus entries

Description

Convert plus minus entries

Usage

snellensteps(x, smallstep)

Arguments
X Vector with VA entries of class snellen - needs to be in format xx/yy
smallstep if plusminus shall be considered as logmar equivalent

Value

character vector of Snellen entries

See Also

https://en.wikipedia.org/wiki/Psychometric_function

Other VA converter: VAwrapper, plausibility_methods, va(), va_methods, va_mixed(), which_va()

va Visual acuity notation conversion

Description

Cleans and converts visual acuity notations (classes) between Snellen (decimal, meter and feet),
ETDRS, and logMAR.

Usage
va(
X ’
from = NULL,
to = NULL,
type = "ft",

smallstep = FALSE,
noplus = FALSE,
quali_values = NULL

va 17

Arguments

X Vector with visual acuity entries. Must be atomic. Snellen fractions need to be
entered with "/"

from will force to evaluate from which notation to convert - Must be "etdrs", "logmar",
"snellen" or "snellendec"”. Ignored if the value should not be plausible.

to To which class to convert. "etdrs", "logmar" or "snellen" - any case allowed. If
NULL (default), will simply "clean up" VA entries. This may then result in a
vector of "mixed" VA notations.

type To which Snellen notation to convert: "m", "dec" or "ft"

smallstep how +/- entries are evaluated. FALSE: increase/decrease Snellen fractions by
lines. TRUE: plus/minus entries equivalent to 0.02 logmar

noplus ignoring plus/minus entries and just returning the snellen fraction. This over-

rides the smallstep argument.

quali_values define your own values for qualitative entries (see details)

Value

vector of va class. See also "VA classes"

VA conversion
* logMAR to ETDRS: logMAR rounded to the first digit and converted with the visual acuity
chart (see section VA chart)
Snellen to logMAR: logMAR = -1 * log10(snellen_frac)
Snellen to ETDRS: ETDRS = 85 + 50 * log10(snellen_frac) Gregori et al. DOI: 10.1097/iae.0b013e3181d87e04

ETDRS to logMAR: logMAR =-0.02 * etdrs + 1.7 Beck et al. DOI: 10.1016/s0002-9394(02)01825-
1

* Hand movements and counting fingers are converted following Schulze-Bonsel et al. DOI:
10.1167/i0vs.05-0981

(No) light perception are converted following the suggestions by Michael Bach

Qualitative visual acuity entries

In order to calculate with qualitative entries counting fingers, hand movement and (no) perception
of light, use logMAR ! Qualitative visual acuity lower than counting fingers is assigned 0 ETDRS
letter, in order to keep it as a measurement (not: NA). It is very difficult to justify a "negative" letter
score in a test which only has a specific range (0-100). By default, va recognises the following
values (case does not matter!)

non non non

* No light perception := c("nlp", "no light perception”, "no light", "no perception of light",
llnplll),
* Light perception: = c("lp", "light perception”, "perception of light", "pl"),

¢ Hand movements: = ¢("hm", "handmotion", "hand movement", "hand movements"),

non non

» Counting fingers: = c("cf", "counting finger", "counting fingers", "finger count”, "count fin-
gers")

https://michaelbach.de/sci/acuity.html

18 va

Custom values for qualitative entries

To define your own values for qualitative entries, you need to pass a names list with names c("cf",
"hm", "nlp", "Ip") - in that order. It accepts only values that can be reasonably converted into
numeric values and it converts only to logMAR. If you want to convert to a different notation, you
will need to call va() a second time.

Converting to Snellen

Although there seems to be no good statistical reason to convert back to Snellen, it is a very natural
thing to eye specialists to think in Snellen. A conversion to snellen gives a good gauge of how
the visual acuity for the patients are. However, back-conversion should not be considered an exact
science and any attempt to use formulas will result in very weird Snellen values that have no corre-
spondence to common charts. Therefore, Snellen matching the nearest ETDRS and logMAR value
in the VA chart are used.

VA chart

You can find the chart with eye: ::va_chart. This chart and VA conversion formulas are based
on charts in Holladay et al. DOI: 10.1016/j.jcrs.2004.01.014, Beck et al. DOI: 10.1016/s0002-
9394(02)01825-1, and Gregori et al. DOI: 10.1097/iae.0b013e3181d87¢04.

The ETDRS values for NLP and PL are deliberately set at those values because they are unlikely
to happen by chance as a wrong entry (and as integers), and it has internal reasons that make
conversion easier.

Accepted VA formats / Plausibility checks
* Snellen fractions (meter/ feet) need to be entered as fraction with "/". Any fractions allowed.
You can get creative with your snellens. see '"Examples'

* ETDRS must be integer-equivalent between 0 and 100 (integer equivalent means, it can also
be a character vector)

* logMAR must be -0.3 <=x <= 3.0

* Snellen decimal must be 0 < x <=2

* Qualitative must be either of PL, LP, NLP, NPL, HM, CF (any case allowed)

* Plausibility checks are performed for the automatically or manually defined notation.
* Any element which is implausible/ not recognized will be converted to NA

Entries with mixed VA notations

Use va_mixed instead.

Snellen "'+/-"" entries

By default, plus/minus entries are evaluated as intended by the test design: Snellen fractions in-
crease/decrease only by lines.

- if entry -2 to +2 : take same Snellen value
- if < -2 : take Snellen value one line below
- if > +2 : take Snellen value one line above

va 19

If smallstep = TRUE, each snellen optotype will be considered equivalent to 0.02 logmar (assuming
5 letters in a row in a chart)

VA cleaning

For more details see clean_va()

non nnon

1. NA is assigned to strings such as "." or "", "n/a" or

2. notation for qualitative entries is simplified.

VA classes
Under the hood, convertVA returns a vector that has three classes:

1. va
2. One of snellen, snellendec, logmar, etdrs or quali.

3. Either of character (for Snellen, Snellen decimal, and qualitative), numeric (for logMAR),
or integer (for ETDRS).

See Also

Other Ophthalmic functions: va_mixed()

Other VA converter: VAwrapper, plausibility_methods, snellen_steps, va_methods, va_mixed(),
which_va()

Other VA cleaner: clean_va()

Examples

calling va without specifying "to"” will clean visual acuity entries
without conversion into another notation. Weird entries will be
replaced by a missing value that R recognises as such

x <= c(23, "", NA, "N/A", "Not measured”, "20/50", 74, 58)
va(x)

... or convert to snellen

va(x, to = "snellen”)

Dealing with those "plus/minus” entries, and qualitative values such as "HM"
Va(C("NLP", NNPLH’ IIPLII, IILPII, IIHMN, ”CF“, “6/60"’ "20/20@’,’ ”6/9“,
"20/40", "20/40+3", "20/50-2"), to = "snellen")

A mix of notations is also possible
x <= c("NLP", "0@.8", "34", "3/60", "2/200", "20/40+3", "20/50-2")
va(x, to = "snellen")

Any fraction is possible, and empty values

change Snellen type to meter with type = "m"

X <_ C(”CF”, “3/60“, ”2/200"’ IIII, II20/40+3H’ H'II, n Il)
va(x, to = "snellen”, type = "m")

20

VAwrapper

VAwrapper

VA conversion wrapper

Description

Simple convenience wrapper around va to get desired VA class

Usage

to_logmar(x,
to_etdrs(x,
to_snellen(x,
as_logmar(x,
as_etdrs(x,

as_snellen(x,

Arguments

X

Value

vector of visual acuities

parameters passed to va

vector with visual acuity of class as_(...) or to_(...) See also convertVA: "VA classes"

VA conversion

For details see va and convertVA

See Also

Other VA converter: plausibility_methods, snellen_steps, va(), va_methods, va_mixed(),

which_va()

Examples

x <- c(23, 56,
to_logmar(x)

to_snellen(x)
to_snellen(x,

x <= c("NLP",
to_snellen(x,

74, 58) ## ETDRS letters

type = "dec")

"9.8", "34" "3/60", "2/200", "20/50", "
from = "snellendec")

n

non

n_n

. "NULL™)

va_mixed 21

to_snellen(x, from = "etdrs")
to_snellen(x, from = "logmar")
va_mixed VA classes
Description

va_mixed is a wrapper around va on all possible VA notations. By default, c("snellen", "etdrs",
"logmar", "snellendec") will be converted - in that order! For tricky cases see details and examples.
Note that va_mixed will not notify you from which notation the values were transformed, nor if

values were replaced with NA.

Usage
va_mixed(x, to = "logmar", possible = c("snellen"”, "etdrs"”, "logmar"”, "quali"))
Arguments
X vector with mixed VA entries
to to which notation to be converted
possible possible VA notations. The order defines which class will be prioritised if a value
can be from more than one class, see details. Default = c("snellen", "etdrs",
"logmar", "quali")
Details

Mixed entries are challenging, but unfortunately seem to occur in real life data. It will be fairly
individual what you have in yours, but it should hopefully not happen that you have all possible
notations. Snellen fractions are usually not challenging because they contain a "/", thus are easy to
recognize.

Values between (0 and 3 are most problematic, in particular full integers - this can be EDTRS,
snellen decimal notation or logmar. By default, snellen decimal are not recognized, but you can
specify this with the "possible" argument. Or, if you know that you don’t have any ETDRS value
less than 4, you can safely give precedence to logmar instead, like this: possible = c(”snellen”,
"logmar”, "etdrs") @examples

awfully mixed notation!! (and note the wrong -1 value)

x <- ¢(NA, "nlp", 1:2, 1.1, -1, "20/40", "4/6", "6/1000", 34) va_mixed(x, to = "snellen")

"'T only have snellen and snellen decimal notation in my data"

non

va_mixed(X, to = "snellen", possible = c("snellen", "snellendec"))

"T have snellen, logmar and etdrs in my data, and there is no etdrs value

less than 4" va_mixed(x, to = "snellen", possible = c("snellen", "logmar", "etdrs"))

22 va_mixed

See Also

Other Ophthalmic functions: va()

Other VA converter: VAwrapper, plausibility_methods, snellen_steps, va(), va_methods,
which_va()

Index

* Ophthalmic functions myop, 3, 9
va, 16 myop(), 8
va_mixed, 21 myop_pivot, 10

* VA cleaner myop_rename, 10
va, 16 myopic (myop), 9

* VA converter myopizer, 10
snellen_steps, 16
va, 16 parse_snellen, 10

plausibility_methods, 16, 19, 20, 22
print.blink (print_methods), 11
print.default, /7

print.etdrs (print_methods), 11

va_mixed, 21
VAwrapper, 20
* convenience functions

getage, 7 . .
« eye core functions print.eyes (print_methods), 11
eyes, 5 print.eyes_details (print_methods), 11

print.logmar (print_methods), 11
print.snellen (print_methods), 11
print_methods, 11

* internals
parse_snellen, 10
snellen_steps, 16

% revealer recodeye, 5, 6, 12
reveal, 13
! X) remCols, 4

* string matching functions reveal. 3. 13

recodeye, 12 reveal_methods, /4

1_split, 14
as_etdrs (VAwrapper), 20 revealsplit,

as_logmar (VAwrapper), 20 set_eye_strings, 5, 6, 12, 14
as_snellen (VAwrapper), 20 snellen_steps, 16, 19, 20, 22
snellensteps (snellen_steps), 16
sort_substr, 12

sort_substr(), 10

str_search, 12

blink, 2

clean_va, 19
clean_va(), 19

convertVA, 20 tibble::tibble, 8, 10
tidyr::pivot_longer(), 8
eye_codes, 9 tidyr::pivot_wider(), §
eyes, 3,5,5 to_etdrs (VAwrapper), 20
eyestr (eyes), 5 to_logmar (VAwrapper), 20
to_snellen (VAwrapper), 20
getage, 7
getElem, 12 va, 16, 16, 20-22
va(), 2
hyperop, 8 va_methods, 16, 19, 20, 22

23

24 INDEX

va_mixed, 16, 18-20, 21
VAwrapper, 16, 19, 20, 22

which_va, 16, 19, 20, 22

	blink
	eyes
	getage
	hyperop
	myop
	parse_snellen
	print_methods
	recodeye
	reveal
	set_eye_strings
	snellen_steps
	va
	VAwrapper
	va_mixed
	Index

