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cpost_stat Estimation of the scedasis function

Description

Kernel-based method for the estimation of the scedasis function. Given the values of the complete
and concomitant covariate, defined as X | Y > t, with t being the threshold, it returns a matrix
containing a posterior sample of the scedasis function for each covariate value.
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Usage

cpost_stat(N, x, xs, xg, bw, k, C = 5L)

Arguments

N integer, number of samples to draw from the distribution of the concomitant
covariate

x one-dimensional vector of in-sample covariate in [0,1]

xs one-dimensional vector of concomitant covariate

xg one-dimensional vector of length m containing the grid of in-sample and possi-
bly out-sample covariate in [0,1]

bw double, bandwidth for the computation of the kernel

k integer, number of exceedances for the generalized Pareto

C integer, hyperparameter entering the posterior distribution of the law of the con-
comitant covariate. Default: 5

Value

an N by m matrix containing the values of the posterior samples of the scedasis function (rows) for
each value of xg (columns)

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n, 0, 1:n, 4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp, decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(

samp,
threshold,
control = list(maxit = 500))

# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

# conditional predictive density estimation
yg <- seq(0, 50, by = 2)
nyg <- length(yg)
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# estimation of scedasis function
# setting
M <- 1e3
C <- 5
alpha <- 0.05
bw <- .5
nsim <- 5000
burn <- 1000
# create covariate
# in sample obs
n_in = n
# number of years ahead
nY = 1
n_out = 365 * nY
# total obs
n_tot = n_in + n_out
# total covariate (in+out sample period)
x <- seq(0, 1, length = n_tot)
# in sample grid dimension for covariate
ng_in <- 150
xg <- seq(0, x[n_in], length = ng_in)
# in+out of sample grid
xg <- c(xg, seq(x[n_in + 1], x[(n_tot)], length = ng_in))
# in+out sample grid dimension
nxg <- length(xg)
xg <- array(xg, c(nxg, 1))
# in sample observations
samp_in <- samp[1:n_in]
ssamp_in <- sort(samp_in, decreasing = TRUE, index = TRUE)
x_in <- x[1:n_in] # in sample covariate
xs <- x_in[ssamp_in$ix[1:k]]
# in sample concomitant covariate
# estimate scedasis function over the in and out of sample period
res_stat <- apply(

xg,
1,
cpost_stat,
N = nsim - burn,
x = x_in,
xs = xs,
bw = bw,
k = k,
C = C

)

## End(Not run)

dowjones Negative log-returns of DOW JONES.
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Description

Series of negative log-returns of the U.S. stock market index Dow Jones.

Format

A 8784 ∗ 2 data frame.

Details

From the series of n = 8785 closing prices St, t = 1, 2, ..., for the Dow Jones stock market index,
recorded from January 29, 1985 to December 12, 2019, the series of negative log-returns.

Xt+1 = − log(St+1/St), 1 ≤ t ≤ n− 1

is available. Hence the dataset (negative log-returns) contains 8784 observations.

EBTailIndex Expectile Based Tail Index Estimation

Description

Computes a point estimate of the tail index based on the Expectile Based (EB) estimator.

Usage

EBTailIndex(data, tau, est=NULL)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details\.

est A real specifying the estimate of the expectile at the intermediate level tau.

Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is estimated using
the EB estimator:

γ̂E
n =

(
1 +

ˆ̄Fn(ξ̃τn )
1−τn

)−1

,

where ˆ̄Fn is the empirical survival function of the observations, ξ̃τn is an estimate of the τn-th
expectile. The observations can be either independent or temporal dependent. See Padoan and
Stupfler (2020) and Daouia et al. (2018) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1
as n → ∞. Practically, τn ∈ (0, 1) is the ratio between the empirical mean distance of the
τn-th expectile from the smaller observations and the empirical mean distance of of the τn-th
expectile from all the observations. An estimate of τn-th expectile is computed and used in
turn to estimate γ.
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• The value est, if provided, is meant to be an esitmate of the τn-th expectile which is used
to estimate γ. On the contrary, if est=NULL, then the routine EBTailIndex estimate first the
τn-th expectile expectile and then use it to estimate γ.

Value

An estimate of the tain index γ.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles.
Journal of the Royal Statistical Society: Series B, 80, 263-292.

See Also

HTailIndex, MomTailIndex, MLTailIndex,

Examples

# Tail index estimation based on the Expectile based estimator obtained with data
# simulated from an AR(1) with 1-dimensional Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallblock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.97

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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gammaHat <- EBTailIndex(data, tau)
gammaHat

estExpectiles High Expectile Estimation

Description

Computes a point and interval estimate of the expectile at the intermediate level.

Usage

estExpectiles(data, tau, method="LAWS", tailest="Hill", var=FALSE, varType="asym-Dep-Adj",
bigBlock=NULL, smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the direct LAWS estimator. See Details.

tailest A string specifying the type of tail index estimator. By default tailest="Hill"
specifies the use of Hill estimator. See Details.

var If var=TRUE then an estimate of the variance of the expectile estimator is com-
puted.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep-Adj"
specifies the variance estimator for serial dependent observations implemented
with a suitable adjustment. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the τn-th expectile is computed. Two estimators
are available: the so-called direct Least Asymmetrically Weighted Squares (LAWS) and indirect
Quantile-Based (QB). The definition of the QB estimator depends on the estimation of the tail
index γ. Here, γ is estimated using the Hill estimation (see HTailIndex) or in alternative using the
the expectile based estimator (see EBTailIndex). The observations can be either independent or
temporal dependent. See Section 3.1 in Padoan and Stupfler (2020) for details.
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• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, τn ∈ (0, 1) is the ratio between N (Numerator) and D (Denominator).
Where N is the empirical mean distance of the τn-th expectile from the observations smaller
than it, and D is the empirical mean distance of τn-th expectile from all the observations.

• If method='LAWS', then the expectile at the intermediate level τn is estimated applying the
direct LAWS estimator. Instead, If method='QB' the indirect QB esimtator is used to estimate
the expectile. See Section 3.1 in Padoan and Stupfler (2020) for details.

• When the expectile is estimated by the indirect QB esimtator (method='QB'), an estimate of
the tail index γ is needed. If tailest='Hill' then γ is estimated using the Hill estimator
(see also HTailIndex). If tailest='ExpBased' then γ is estimated using the expectile based
estimator (see EBTailIndex). See Section 3.1 in Padoan and Stupfler (2020) for details.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically,
when method='LAWS' and tau=NULL, kn specifies by τn = 1 − kn/n the intermediate level
of the expectile. Instead, when method='QB', if tailest="Hill" then the value kn specifies
the number of k+1 larger order statistics to be used to estimate γ by the Hill estimator and
if tau=NULL then it also specifies by τn = 1 − kn/n the confidence level τn of the quantile
to estimate. Finally, if tailest="ExpBased" and tau=NULL then it also specifies by τn =
1− kn/n the intermediate level expectile based esitmator of γ (see EBTailIndex).

• If var=TRUE then the asymptotic variance of the expecile estimator is computed. With in-
dependent observations the asymptotic variance is computed by the formula Theorem 3.1 of
Padoan and Stupfler (2020). This is achieved through varType="asym-Ind". With serial
dependent observations the asymptotic variance is estimated by the formula in Theorem 3.1
of Padoan and Stupfler (2020). This is achieved through varType="asym-Dep". In this lat-
ter case the computation of the asymptotic variance is based on the "big blocks seperated by
small blocks" techinque which is a standard tools in time series, see Leadbetter et al. (1986).
See also Section C.1 in Appendix of Padoan and Stupfler (2020). The size of the big and
small blocks are specified by the parameters bigblock and smallblock, respectively. Still
with serial dependent observations, If varType="asym-Dep-Adj", then the asymptotic vari-
ance is estimated using formula (C.79) in Padoan and Stupfler (2020), see Section C.1 of the
Appendix for details.

• Given a small value α ∈ (0, 1) then an asymptotic confidence interval for the τn-th expectile,
with approximate nominal confidence level (1 − α)100% is computed. See Sections 3.1 and
C.1 in the Appendix of Padoan and Stupfler (2020).

Value

A list with elements:

• ExpctHat: a point estimate of the τn-th expecile;

• VarExpHat: an estimate of the asymptotic variance of the expectile estimator;

• CIExpct: an estimate of the approximate (1−α)100% confidence interval for τn-th expecile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles.
Journal of the Royal Statistical Society: Series B, 80, 263-292.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random
sequences and processes. Springer.

See Also

HTailIndex, EBTailIndex, predExpectiles, extQuantile

Examples

# Extreme expectile estimation at the intermediate level tau obtained with
# 1-dimensional data simulated from an AR(1) with Student-t innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# High expectile (intermediate level) estimation
expectHat <- estExpectiles(data, tau, var=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
expectHat$ExpctHat
expectHat$CIExpct

estExtLevel Extreme Level Estimation

Description

Estimates the expectile’s extreme level corresponding to a quantile’s extreme level.
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Usage

estExtLevel(alpha_n, data=NULL, gammaHat=NULL, VarGamHat=NULL, tailest="Hill", k=NULL,
var=FALSE, varType="asym-Dep", bigBlock=NULL, smallBlock=NULL, alpha=0.05)

Arguments

alpha_n A real in (0, 1) specifying the extreme level αn for the quantile. See Details.

data A vector of (1× n) observations to be used to estimate the tail index in the case
it is not provided. By default data=NULL specifies that no data are given.

gammaHat A real specifying an estimate of the tail index. By default gammaHat=NULL spec-
ifies that no estimate is given. See Details.

VarGamHat A real specifying an estimate of the variance of the tail index estimate. By
default VarGamHat=NULL specifies that no estimate is given. See Details.

tailest A string specifying the type of tail index estimator to be used. By default
tailest="Hill" specifies the use of Hill estimator. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

var If var=TRUE then an estimate of the variance of the extreme level estimator is
computed.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep"
specifies the variance estimator for serial dependent observations. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a given extreme level αn for the αn-th quantile, an estimate of the extreme level τ ′n(αn) is
computed such that ξτ ′

n(αn) = qαn
. The estimator is defined by

τ̂ ′n(αn) = 1− (1− αn)
γ̂n

1−γ̂n

where γ̂n is a consistent estimator of the tail index γ. If a value for the parameter gammaHat is given,
then such a value is used to compute τ̂ ′n. If gammaHat is NULL and a dataset is provided through the
parameter data, then the tail index γ is estimated by a suitable estimator γ̂n. See Section 6 in
Padoan and Stupfler (2020) for more details.

• If VarGamHat is specified, i.e. the variance of the tail index estimator, then the variance of the
extreme level estimator τ̂ ′n is computed by using such value.

• When estimating the tail index, if tailest='Hill' then γ is estimated using the Hill estimator
(see also HTailIndex). If tailest='ML' then γ is estimated using the Maximum Likelihood
estimator (see MLTailIndex). If tailest='ExpBased' then γ is estimated using the expec-
tile based estimator (see EBTailIndex). If tailest='Moment' then γ is estimated using the
moment based estimator (see MomTailIndex). See Padoan and Stupfler (2020) for details.
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• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, when
tailest="Hill" then the value kn specifies the number of k+1 larger order statistics to be
used to estimate γ by the Hill estimator. See MLTailIndex, EBTailIndex and MomTailIndex
for the other estimators.

• If var=TRUE then the asymptotic variance of the extreme level estimator is computed by ap-
plying the delta method, i.e.
V ar(τ ′n) = V ar(γ̂n) ∗ (αn − 1)2/(1− γ̂n)

4

where V ar(γ̂n is provided by VarGamHat or is estimated when esitmating the tail index
through tailest='Hill' and tailest='ML'. See HTailIndex and MLTailIndex for details
on how the variance is computed.

• Given a small value α ∈ (0, 1) then an asymptotic confidence interval for the extreme level,
τ ′n(αn), with approximate nominal confidence level (1− α)100% is computed.

Value

A list with elements:

• tauHat: an estimate of the extreme level τ ′n;

• tauVar: an estimate of the asymptotic variance of the extreme level estimator τ̂ ′n(αn);

• tauCI: an estimate of the approximate (1− α)100% confidence interval for the extreme level
τ ′n(αn).

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles.
Journal of the Royal Statistical Society: Series B, 80, 263-292.

See Also

estExpectiles, predExpectiles, extQuantile

Examples

# Extreme level estimation for a given quantile's extreme level alpha_n
# obtained with 1-dimensional data simulated from an AR(1) with Student-t innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
alpha_n <- 0.999

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# expectile's extreme level estimation
tau1Hat <- estExtLevel(alpha_n, data, var=TRUE, k=150, bigBlock=bigBlock,

smallBlock=smallBlock)
tau1Hat

estMultiExpectiles Multidimensional High Expectile Estimation

Description

Computes point estimates and (1− α)100% confidence regions for d-dimensional expectiles at the
intermediate level.

Usage

estMultiExpectiles(data, tau, method="LAWS", tailest="Hill", var=FALSE,
varType="asym-Ind-Adj", k=NULL, alpha=0.05, plot=FALSE)

Arguments

data A matrix of (n× d) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the direct LAWS estimator. See Details.

tailest A string specifying the type of tail index estimator. By default tailest="Hill"
specifies the use of Hill estimator. See Details.

var If var=TRUE then an estimate of the variance of the expectile estimator is com-
puted.

varType A string specifying the asymptotic variance-covariance matrix to compute. By
default varType="asym-Ind-Adj" specifies that the variance-covariance matrix
is computed assuming dependent variables and exploiting a suitable adjustment.
See Details.
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k An integer specifying the value of the intermediate sequence kn. See Details.
alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate

confidence region for the d-dimensional expecile at the intermedite level.
plot A logical value. By default plot=FALSE specifies that no graphical representa-

tion of the estimates is not provided. See Details.

Details

For a dataset data of d-dimensional observations and sample size n, an estimate of the τn-th d-
dimensional is computed. Two estimators are available: the so-called direct Least Asymmetrically
Weighted Squares (LAWS) and indirect Quantile-Based (QB). The QB estimator depends on the
estimation of the d-dimensional tail index γ. Here, γ is estimated using the Hill estimator (see Mul-
tiHTailIndex). The data are regarded as d-dimensional temporal independent observations coming
from dependent variables. See Padoan and Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, for each individual marginal distribution τn ∈ (0, 1) is the ratio between
N (Numerator) and D (Denominator). Where N is the empirical mean distance of the τn-th
expectile from the observations smaller than it, and D is the empirical mean distance of τn-th
expectile from all the observations.

• If method='LAWS', then the expectile at the intermediate level τn is estimated applying the
direct LAWS estimator. Instead, If method='QB' the indirect QB esimtator is used to estimate
the expectile. See Section 2.1 in Padoan and Stupfler (2020) for details.

• When the expectile is estimated by the indirect QB esimtator (method='QB'), an estimate of
the d-dimensional tail index γ is needed. Here the d-dimensional tail index γ is estimated
using the d-dimensional Hill estimator (tailest='Hill', see MultiHTailIndex). This is the
only available option so far (soon more results will be available).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically,
for each marginal distribution, when method='LAWS' and tau=NULL, kn specifies by τn =
1−kn/n the intermediate level of the expectile. Instead, for each marginal distribution, when
method='QB', then the value kn specifies the number of k+1 larger order statistics to be used
to estimate γ by the Hill estimator and if tau=NULL then it also specifies by τn = 1 − kn/n
the confidence level τn of the quantile to estimate.

• If var=TRUE then an estimate of the asymptotic variance-covariance matrix of the d-dimensional
expecile estimator is computed. If the data are regarded as d-dimensional temporal indepen-
dent observations coming from dependent variables. Then, the asymptotic variance-covariance
matrix is estimated by the formulas in section 3.1 of Padoan and Stupfler (2020). In par-
ticular, the variance-covariance matrix is computed exploiting the asymptotic behaviour of
the relative explectile estimator appropriately normalized and using a suitable adjustment.
This is achieved through varType="asym-Ind-Adj". The data can also be regarded as d-
dimensional temporal independent observations coming from independent variables. In this
case the asymptotic variance-covariance matrix is diagonal and is also computed exploit-
ing the formulas in section 3.1 of Padoan and Stupfler (2020). This is achieved through
varType="asym-Ind".

• Given a small value α ∈ (0, 1) then an asymptotic confidence region for the τn-th expectile,
with approximate nominal confidence level (1− α)100% is computed. In particular, a "sym-
metric" confidence regions is computed exploiting the asymptotic behaviour of the relative
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explectile estimator appropriately normalized. See Sections 3.1 of Padoan and Stupfler (2020)
for detailed.

• If plot=TRUE then a graphical representation of the estimates is not provided.

Value

A list with elements:

• ExpctHat: an point estimate of the τn-th d-dimensional expecile;

• biasTerm: an point estimate of the bias term of the estimated expecile;

• VarCovEHat: an estimate of the asymptotic variance of the expectile estimator;

• EstConReg: an estimate of the approximate (1 − α)100% confidence region for τn-th d-
dimensional expecile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate
heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

MultiHTailIndex, predMultiExpectiles, extMultiQuantile

Examples

# Extreme expectile estimation at the intermediate level tau obtained with
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- .95

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# High d-dimensional expectile (intermediate level) estimation
expectHat <- estMultiExpectiles(data, tau, var=TRUE)
expectHat$ExpctHat
expectHat$VarCovEHat
# run the following command to see the graphical representation
## Not run:
expectHat <- estMultiExpectiles(data, tau, var=TRUE, plot=TRUE)

## End(Not run)

estPOT Estimation of generalized Pareto distributions

Description

Bayesian or frequentist estimation of the scale and shape parameters of the continuous or discrete
generalized Pareto distribution.

Usage

estPOT(
data,
k = 10L,
pn = NULL,
type = c("continuous", "discrete"),
method = c("bayesian", "frequentist"),
prior = "empirical",
start = NULL,
sig0 = NULL,
nsim = 5000L,
burn = 1000L,
p = 0.234,
optim.method = "Nelder-Mead",
control = NULL,
...

)
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Arguments

data numeric vector of length n containing complete data values (under and above
threshold)

k double indicating the effective sample size. Default: 10

pn numeric vector containing one or more percentile level at which extreme quan-
tiles are estimated, with p < k/n. Default: NULL

type string indicating distribution types. Default: c('continuous','discrete')

method string indicating estimation methods. Default: c('bayesian', 'frequentist')

prior string indicating prior distribution (uniform or empirical). Default: 'empirical'

start list of 2 containing starting values for scale and shape parameters. Default: NULL

sig0 double indicating the initial value for the update of the variance in the MCMC
algorithm. Default: NULL

nsim double indicating the total number of iterations of the MCMC algorithm in the
Bayesian estimation case. Default: 5000L

burn double indicating the number of iterations to exclude in the MCMC algorithm
of the Bayesian estimation case. Default: 1000L

p double indicating the desired overall sampler acceptance probability. Default:
0.234

optim.method string indicating the optimization method in the frequentist estimation case. De-
fault: 'Nelder-Mead'

control list containing additional parameters for the minimization function optim. De-
fault: NULL

... other arguments passed to the function

Value

a list with the following elements

• Bayesian estimation case

– Q.est matrix with nsim-burn rows and length(pn) columns containing the posterior
sample of the extreme quantile estimated at level given in pn

– post_sample matrix with nsim-burn rows and 2 columns containing the posterior sam-
ple of the scale and shape parameters for the continuous or discrete generalized Pareto
distribution

– burn double indicating the number of iterations excluded in the MCMC algorithm
– straight.reject vector of length nsim-burn+1 indicating the iterations in which the

proposed parameters do not respect basic constraints
– sig.vec vector of length nsim−⌊(5/(p(1−p)))⌋+1 containing the values of the variance

updated at each iteration of the MCMC algorithm
– accept.prob matrix containing the values of acceptance probability (second column)

corresponding to specific iterations (first column)
– msg character string containing an output message on the result of the Bayesian estimation

procedure
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– mle vector of length 2 containing the maximum likelihood estimates of the scale and
shape parameters of the continuous or discrete generalized Pareto distribution

– t double indicating the threshold for the generalized Pareto model, corresponding to the
n− kth order statistic of the sample

• Frequentist estimation case

– est vector of length 2 containing the maximum likelihood estimates of the scale and
shape parameters of the continuous or discrete generalized Pareto distribution

– t double indicating the threshold
– Q.est vector of dimension length(pn) containing the estimates of the extreme quantile

at level given in pn
– VarCov 2× 2 variance-covariance matrix of (gamma, sigma)
– Q.VC variance of Q.est
– msg character string containing an output message on the result of the frequentist estima-

tion procedure

References

Dombry, C., S. Padoan and S. Rizzelli (2025). Asymptotic theory for Bayesian inference and
prediction: from the ordinary to a conditional Peaks-Over-Threshold method, arXiv:2310.06720v2.

See Also

fpot

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n,0,3,4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp,decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(samp, threshold)
# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

## End(Not run)
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expectiles Expectile Computation

Description

Computes the true expectile for some families of parametric models.

Usage

expectiles(par, tau, tsDist="gPareto", tsType="IID", trueMethod="true",
estMethod="LAWS", nrep=1e+05, ndata=1e+06, burnin=1e+03)

Arguments

par A vector of (1×p) parameters of the time series parametric family. See Details.

tau A real in (0, 1) specifying the level τ of the expectile to be computed. See
Details.

tsDist A string specifying the parametric family of the innovations distribution. By de-
fault tsDist="gPareto" specifies a Pareto family of distributions. See Details.

tsType A string specifying the type of time series. By default tsType="IID" specifies
a sequence of independent and indentically distributed random variables. See
Details.

trueMethod A string specifying the method used to computed the expecile. By default
trueMethod="true" specifies that the true analytical expression to computed
the expectile is used. See Details.

estMethod A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the direct LAWS estimator. See Details.

nrep A positive interger specifying the number of simulations to use for computing
an approximation of the expectile. See Details.

ndata A positive interger specifying the number of observations to genreated for each
simulation. See Details.

burnin A positive interger specifying the number of initial observations to discard from
the simulated sample.

Details

For a parametric family of time series models or a parametric family of distributions (for the case
of independent observations) the τ -th expectile (or expectile of level tau) is computed.

• There are two methods to compute the τ -th expectile. For the Generalised Pareto and Student-
t parametric families of distributions, the analytical epxression of the expectile is available.
This is used to compute the τ -th expectile if the parameter trueMethod="true" is speci-
fied. For most of parametric family of distributions or parametric families of time series
models the analytical epxression of the expectile is not available. In this case an approx-
imate value of the τ -th expectile is computed via a Monte Carlo method if the parameter
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trueMethod=="approx" is specified. In particular, ndata observations from a family of
time series models (e.g. tsType="AR" and tsDist="studentT") or a sequence of inde-
pendent and indentically distributed random variables with common family of distributions
(e.g. tsType="IID" and tsDist="gPareto") are simulated nrep times. For each simula-
tion the τ -th expectile is estimate by the estimation method specified by estMethod. The
mean of such estimate provides an approximate value of the τ -th expectile. The available
estimator to esitmate the expecile are the direct LAWS (estMethod="LAWS") and the indirect
QB (estMethod="QB"), see estExpectiles for details. The available families of distributions
are: Generalised Pareto (tsDist="gPareto"), Student-t (tsDist="studentT") and Frechet
(tsDist="Frechet"). The available classes of time series with parametric innovations fami-
lies of distributions are specified in rtimeseries.

Value

The τ -th expectile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

See Also

rtimeseries

Examples

# Derivation of the true tau-th expectile for the Pareto distribution
# via accurate simulation

# parameter value
par <- c(1, 0.3)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

trueExp <- expectiles(par, tau)
trueExp

## Not run:
# tau-th expectile of the AR(1) with Student-t innovations
tsDist <- "studentT"
tsType <- "AR"

# Approximation via Monte Carlo methods
trueMethod <- "approx"

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

trueExp <- expectiles(par, tau, tsDist, tsType, trueMethod)
trueExp

## End(Not run)

ExpectMES Marginal Expected Shortfall Expectile Based Estimation

Description

Computes a point and interval estimate of the Marginal Expected Shortfall (MES) using an expectile
based approach.

Usage

ExpectMES(data, tau, tau1, method="LAWS", var=FALSE, varType="asym-Dep", bias=FALSE,
bigBlock=NULL, smallBlock=NULL, k=NULL, alpha_n=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the LAWS based estimator. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the MES estimator
is computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.
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k An integer specifying the value of the intermediate sequence kn. See Details.

alpha_n A real in (0, 1) specifying the quantile’s extreme level to be use in order to
estimate the expectile’s extreme level.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the τ ′n-th MES is computed. The estimation
of the MES at the extreme level tau1 (τ ′n) is indeed meant to be a prediction. Two estimators are
available: the so-called Least Asymmetrically Weighted Squares (LAWS) based estimator and the
Quantile-Based (QB) estimator. The definition of both estimators depends on the estimation of
the tail index γ. Here, γ is estimated using the Hill estimation (see HTailIndex for details). The
observations can be either independent or temporal dependent. See Section 4 in Padoan and Stupfler
(2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. See predExpectiles for details.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. See predExpectiles for details.

• When method='LAWS', then the τ ′n-th MES is estimated using the LAWS based estimator.
When method='QB', the expectile is instead estimated using the QB esimtator. See Sectino 4
in Padoan and Stupfler (2020) and in particular Corollary 4.3 and 4.4 for details. The definition
of both estimators depend on the estimation of the tail index γ. In particular, the tail index γ
is estimated using the Hill estimator (see HTailIndex).

• If var=TRUE then an esitmate of the asymptotic variance of the tau′
n-th MES is computed.

Notice that the estimation of the asymptotic variance is only available when γ is estimated
using the Hill estimator (see HTailIndex). With independent observations the asymptotic vari-
ance is estimated by γ̂2, see Corollary 4.3 in Padoan and Stupfler (2020). This is achieved
through varType="asym-Ind". With serial dependent observations the asymptotic variance
is estimated by the formula in Corollary 4.3 of Padoan and Stupfler (2020). This is achieved
through varType="asym-Dep". See Section 4 adn 5 in Padoan and Stupfler (2020) for details.
In this latter case the computation of the serial dependence is based on the "big blocks seper-
ated by small blocks" techinque which is a standard tools in time series, see e.g. Leadbetter et
al. (1986). The size of the big and small blocks are specified by the parameters bigBlock and
smallBlock, respectively.

• If bias=TRUE then γ is estimated using formula (4.2) of Haan et al. (2016). This is used by
the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated using the formula
in page 330 of de Haan et al. (2016). This provides a bias corrected version of the Weissman
estimator. This is used by the QB estimator. However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.2. Instead, for simplicity
the asymptotic variance is estimated by the formula in Corollary 3.8, with serial dependent
observations, and γ̂2 with independent observation (see e.g. de Drees 2000, for the details).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically,
when tau=NULL and method='LAWS', then τn = 1 − kn/n is the intermediate level of the
expectile to be stimated. kn also specifies the number of k+1 larger order statistics used in the
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definition of the Hill estimator (see HTailIndex for detail). Differently, When tau=NULL and
method='QB', then τn = 1− kn/n is the intermediate level of the quantile to be stimated.

• If the quantile’s extreme level is provided by alpha_n, then expectile’s extreme level tau′
n is

replaced by tau′
n(αn) which is estimated by the method described in Section 6 of Padoan and

Stupfler (2020). See estExtLevel for details.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
tau′

n-th expectile, with approximate nominal confidence level (1 − α)100%, is computed.
The confidence intervals are computed exploiting formula in Corollary 4.3, 4.4 and Theorem
6.2 of Padoan and Stupfler (2020) and (46) in Drees (2003). See Sections 4-6 in Padoan and
Stupfler (2020) for details. When biast=TRUE confidence intervals are computed in the same
way but after correcting the tail index estimate by an estimate of the bias term, see formula
(4.2) in de Haan et al. (2016) for details.

Value

A list with elements:

• HatXMES: an estimate of the τ ′n-th expectile based MES;

• VarHatXMES: an estimate of the asymptotic variance of the expectile based MES estimator;

• CIHatXMES: an estimate of the approximate (1− α)100% confidence interval for τ ′n-th MES.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles.
Journal of the Royal Statistical Society: Series B, 80, 263-292.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to

nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance.
Bernoulli, 9, 617-657.

Drees, H. (2000). Weighted approximations of tail processes for

β-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random
sequences and processes. Springer.

See Also

QuantMES, HTailIndex, predExpectiles, extQuantile

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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Examples

# Marginl Expected Shortfall expectile based estimation at the extreme level
# obtained with 2-dimensional data simulated from an AR(1) with bivariate
# Student-t distributed innovations

tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
alpha_n <- 0.999

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)

# Extreme MES expectile based estimation
MESHat <- ExpectMES(data, NULL, NULL, var=TRUE, k=150, bigBlock=bigBlock,

smallBlock=smallBlock, alpha_n=alpha_n)
MESHat

extBQuant Bayesian extreme quantile

Description

Given posterior samples for the parameters of the continuous or discrete generalized Pareto distri-
bution, return the posterior mean and 1− α level credibility intervals of the extreme quantile

Usage

extBQuant(
threshold,
postsamp,
k,
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n,
retp,
alpha = 0.05,
type = c("continuous", "discrete")

)

Arguments

threshold threshold for the generalized Pareto model, corresponding to the n − kth order
statistic of the sample

postsamp a m by 2 matrix with columns containing the posterior samples of scale and shape
parameters of the generalized Pareto distribution, respectively

k integer, number of exceedances for the generalized Pareto (only used if extrapolation=TRUE)

n integer, number of observations in the full sample. Must be greater than k (only
used if extrapolation=TRUE)

retp double indicating the value of the return period

alpha level for credibility interval. Default: 0.05 giving 95% credibility intervals

type string indicating distribution types. Default: c('continuous','discrete')

Value

a list with components

• mQ posterior mean of the extreme quantile

• ciQ vector of dimension 2 returning the α/2 and 1− α/2 empirical quantiles of the posterior
distribution of the extreme quantile

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(500,0,3,4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp,decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(samp, threshold)
# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)
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# extreme quantile corresponding to a return period of 100
extBQuant(

proc$t,proc$post_sample,
k,
n,
100,
0.05,
type = "continuous")

## End(Not run)

extBQuantx Conditional Bayesian extreme quantile

Description

Given posterior samples for the parameters of the continuous or discrete generalized Pareto dis-
tribution and scedasis function for a set of covariates, return the posterior mean and 1 − α level
credibility intervals of the extreme quantile for each value of the scedasis function

Usage

extBQuantx(
cx,
postsamp,
threshold,
n,
qlev,
k,
type = c("continuous", "discrete"),
confint = c("asymmetric", "symmetric"),
alpha = 0.05,
...

)

Arguments

cx an m by p matrix, obtained by evaluating the scedasis function for every of the p
covariate values and every m posterior draw

postsamp a m by 2 matrix with columns containing the posterior samples of scale and shape
parameters of the generalized Pareto distribution, respectively

threshold threshold for the generalized Pareto model, corresponding to the n − kth order
statistic of the sample

n integer, number of observations in the full sample. Must be greater than k

qlev double indicating the percentile level at which the extreme quantile is estimated.
Must be smaller than k/n
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k integer, number of exceedances for the generalized Pareto (only used if extrapolation=TRUE)

type string indicating distribution types. Default: c('continuous','discrete')

confint type of confidence interval. Default: c('asymmetric', 'symmetric')

alpha level for credibility interval. Default 0.05, giving 95% credibility intervals

... additional arguments, for back-compatilibity

Value

a list with components

• mQ posterior mean of the extreme quantile

• ciQ vector of dimension 2 returning the α/2 and 1− α/2 empirical quantiles of the posterior
distribution of the extreme quantile

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n,0,1:n,4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp,decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(
samp,
threshold,
control = list(maxit = 500))

# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

# conditional predictive density estimation
yg <- seq(0, 50, by = 2)
nyg <- length(yg)
# estimation of scedasis function
# setting
M <- 1e3
C <- 5
alpha <- 0.05
bw <- .5
nsim <- 5000
burn <- 1000
# create covariate
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# in sample obs
n_in = n
# number of years ahead
nY = 1
n_out = 365 * nY
# total obs
n_tot = n_in + n_out
# total covariate (in+out sample period)
x <- seq(0, 1, length = n_tot)
# in sample grid dimension for covariate
ng_in <- 150
xg <- seq(0, x[n_in], length = ng_in)
# in+out of sample grid
xg <- c(xg, seq(x[n_in + 1], x[(n_tot)], length = ng_in))
# in+out sample grid dimension
nxg <- length(xg)
xg <- array(xg, c(nxg, 1))
# in sample observations
samp_in <- samp[1:n_in]
ssamp_in <- sort(samp_in, decreasing = TRUE, index = TRUE)
x_in <- x[1:n_in] # in sample covariate
xs <- x_in[ssamp_in$ix[1:k]] # in sample concomitant covariate
# estimate scedasis function over the in and out of sample period
res_stat <- apply(

xg,
1,
cpost_stat,
N = nsim - burn,
x = x_in,
xs = xs,
bw = bw,
k = k,
C = C

)
# conditional predictive posterior density
probq = 1 - 0.99
res_AQ <- extBQuantx(
cx = res_stat,
postsamp = proc$post_sample,
threshold = proc$t,
n = n,
qlev = probq,
k = k,
type = "continuous",
confint = "asymmetric")

## End(Not run)

extMultiQuantile Multidimensional Value-at-Risk (VaR) or Extreme Quantile (EQ) Esti-
mation
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Description

Computes point estimates and (1 − α)100% confidence regions for d-dimensional VaR based on
the Weissman estimator.

Usage

extMultiQuantile(data, tau, tau1, var=FALSE, varType="asym-Ind-Log", bias=FALSE,
k=NULL, alpha=0.05, plot=FALSE)

Arguments

data A matrix of (n× d) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

var If var=TRUE then an estimate of the asymptotic variance-covariance matrix of
the d-dimensional VaR estimator is computed.

varType A string specifying the type of asymptotic variance-covariance matrix to com-
pute. By default varType="asym-Ind-Log" specifies that the variance-covariance
matrix is obtained assuming dependent variables and exploiting the logarithmic
scale. See Details.

bias A logical value. By default biast=FALSE specifies that no bias correction is
computed. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence region for the d-dimensional VaR.

plot A logical value. By default plot=FALSE specifies that no graphical representa-
tion of the estimates is not provided. See Details.

Details

For a dataset data of d-dimensional observations and sample size n, the VaR or EQ, correspoding
to the extreme level tau1, is computed by applying the d-dimensional Weissman estimator. The
definition of the Weissman estimator depends on the estimation of the d-dimensional tail index γ.
Here, γ is estimated using the Hill estimation (see MultiHTailIndex). The data are regarded as d-
dimensional temporal independent observations coming from dependent variables. See Padoan and
Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, for each variable, (1− τn) ∈ (0, 1) is a small proportion of observations
in the observed data sample that exceed the taun-th empirical quantile. Such proportion of
observations is used to estimate the individual taun-th quantile and tail index γ.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. For each variable, the value (1−tau′

n) ∈ (0, 1) is meant to be a small tail probability
such that (1−τ ′n) = 1/n or (1−τ ′n) < 1/n. It is also assumed that n(1−τ ′n) → C as n → ∞,
where C is a positive finite constant. The value C is the expected number of exceedances of
the individual τ ′n-th quantile. Typically, C ∈ (0, 1) which means that it is expected that there
are no observations in a data sample exceeding the individual quantile of level (1− τ ′n).
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• If var=TRUE then an estimate of the asymptotic variance-covariance matrix of the tau′
n-th

d-dimensional quantile is computed. The data are regarded as temporal independent obser-
vations coming from dependent variables. The asymptotic variance-covariance matrix is es-
timated exploiting the formula in Section 5 of Padoan and Stupfler (2020). In particular, the
variance-covariance matrix is computed exploiting the asymptotic behaviour of the normal-
ized quantile estimator which is expressed in logarithmic scale. This is achieved through
varType="asym-Ind-Log". If varType="asym-Ind" then the variance-covariance matrix is
computed exploiting the asymptotic behaviour of the d-dimensional relative quantile estimator
appropriately normalized (see formula in Section 5 of Padoan and Stupfler (2020)).

• If bias=TRUE then an estimate of each individual τ ′n–th quantile is estimated using the formula
in page 330 of de Haan et al. (2016), which provides a bias corrected version of the Weissman
estimator. However, in this case the asymptotic variance is not estimated using the formula
in Haan et al. (2016) Theorem 4.2. For simplicity standard the variance-covariance matrix is
still computed using formula in Section 5 of Padoan and Stupfler (2020).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically,
for each marginal distribution, the value kn specifies the number of k+1 larger order statistics
to be used to estimate the individual τn-th empirical quantile and individual tail index γj for
j = 1, . . . , d. The intermediate level τn can be seen defined as τn = 1− kn/n.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence region for
tau′

n-th d-dimensional quantile, with approximate nominal confidence level (1 − α)100%,
is computed. The confidence regions are computed exploiting the asymptotic behaviour of
the normalized quantile estimator in logarithmic scale. This is an "asymmetric" region and
it is achieved through varType="asym-Ind-Log". A "symmetric" region is obtained ex-
ploiting the asymptotic behaviour of the relative quantile estimator appropriately normal-
ized, see formula in Section 5 of Padoan and Stupfler (2020). This is achieved through
varType="asym-Ind".

• If plot=TRUE then a graphical representation of the estimates is not provided.

Value

A list with elements:

• ExtQHat: an estimate of the d-dimensional VaR or τ ′n-th d-dimensional quantile;

• VarCovExQHat: an estimate of the asymptotic variance-covariance of the d-dimensional VaR
estimator;

• EstConReg: an estimate of the approximate (1 − α)100% confidence regions for the d-
dimensional VaR.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate
heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to financial time
series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag,
New York.

See Also

MultiHTailIndex, estMultiExpectiles, predMultiExpectiles

Examples

# Extreme quantile estimation at the extreme level tau1 obtained with
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved quantile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# High d-dimensional expectile (intermediate level) estimation
extQHat <- extMultiQuantile(data, tau, tau1, TRUE)

extQHat$ExtQHat
extQHat$VarCovExQHat
# run the following command to see the graphical representation
## Not run:
extQHat <- extMultiQuantile(data, tau, tau1, TRUE, plot=TRUE)

## End(Not run)
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extQuantile Value-at-Risk (VaR) or Extreme Quantile (EQ) Estimation

Description

Computes a point and interval estimate of the VaR based on the Weissman estimator.

Usage

extQuantile(data, tau, tau1, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the VaR estimator is
computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default biast=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the VaR.

Details

For a dataset data of sample size n, the VaR or EQ, correspoding to the extreme level tau1, is
computed by applying the Weissman estimator. The definition of the Weissman estimator depends
on the estimation of the tail index γ. Here, γ is estimated using the Hill estimation (see HTailIndex).
The observations can be either independent or temporal dependent (see e.g. de Haan and Ferreira
2006; Drees 2003; de Haan et al. 2016 for details).

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, (1 − τn) ∈ (0, 1) is a small proportion of observations in the observed
data sample that exceed the taun-th empirical quantile. Such proportion of observations is
used to estimate the taun-th quantile and γ.
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• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. The value (1 − tau′

n) ∈ (0, 1) is meant to be a small tail probability such that
(1− τ ′n) = 1/n or (1− τ ′n) < 1/n. It is also assumed that n(1− τ ′n) → C as n → ∞, where
C is a positive finite constant. The value C is the expected number of exceedances of the τ ′n-th
quantile. Typically, C ∈ (0, 1) which means that it is expected that there are no observations
in a data sample exceeding the quantile of level (1− τ ′n).

• If var=TRUE then an estimate of the asymptotic variance of the tau′
n-th quantile is computed.

With independent observations the asymptotic variance is estimated by the formula γ̂2 (see
e.g. de Drees 2000, 2003, for details). This is achieved through varType="asym-Ind". With
serial dependent data the asymptotic variance is estimated by the formula in 1288 in Drees
(2000). This is achieved through varType="asym-Dep". In this latter case the computation of
the serial dependence is based on the "big blocks seperated by small blocks" techinque which
is a standard tools in time series, see e.g. Leadbetter et al. (1986). The size of the big and
small blocks are specified by the parameters bigBlock and smallBlock, respectively. With
serial dependent data the asymptotic variance can also be estimated by formula (32) of Drees
(2003). This is achieved through varType="asym-Alt-Dep".

• If bias=TRUE then an estimate of the τ ′n–th quantile is computed using the formula in page 330
of de Haan et al. (2016), which provides a bias corrected version of the Weissman estimator.
However, in this case the asymptotic variance is not estimated using the formula in Haan et
al. (2016) Theorem 4.2. Instead, for simplicity standard formula in Drees (2000) page 1288
is used.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the number of k+1 larger order statistics to be used to estimate the τn-th
empirical quantile and γ. The intermediate level τn can be seen defined as τn = 1− kn/n.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
tau′

n-th quantile, with approximate nominal confidence level (1−α)100%, is computed. The
confidence intervals are computed exploiting the formulas (33) and (46) of Drees (2003).
When biast=TRUE confidence intervals are computed in the same way but after correcting the
tail index estimate by an estimate of the bias term, see formula (4.2) in de Haan et al. (2016)
for details. Furthermore, in this case with serial dependent data the asymptotic variance is
estimated using the formula in Drees (2000) page 1288.

Value

A list with elements:

• ExtQHat: an estimate of the VaR or τ ′n-th quantile;

• VarExQHat: an estimate of the asymptotic variance of the VaR estimator;

• CIExtQ: an estimate of the approximate (1− α)100% confidence interval for the VaR.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to

nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag,
New York.

Drees, H. (2000). Weighted approximations of tail processes for

β-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance.
Bernoulli, 9, 617-657.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random
sequences and processes. Springer.

See Also

HTailIndex, EBTailIndex, estExpectiles

Examples

# Extreme quantile estimation at the level tau1 obtained with 1-dimensional data
# simulated from an AR(1) with univariate Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.97
# Extreme level (or tail probability 1-tau1 of unobserved quantile)
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# VaR (extreme quantile) estimation
extQHat1 <- extQuantile(data, tau, tau1, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
extQHat1$ExtQHat
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extQHat1$CIExtQ

# VaR (extreme quantile) estimation with bias correction
extQHat2 <- extQuantile(data, tau, tau1, TRUE, bias=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
extQHat2$ExtQHat
extQHat2$CIExtQ

fitdGPD Maximum likelihood estimation of the parameters of the discrete gen-
eralized Pareto distribution

Description

Given a sample of exceedances, estimate the parameters via maximum likelihood along with 1− α
level confidence intervals.

Usage

fitdGPD(excess, alpha = 0.05)

Arguments

excess vector of positive exceedances, i.e., Y − t | Y > t, with t being the threshold

alpha level for confidence interval of scale and shape parameters. Default: 0.05, giving
95% confidence intervals

Value

a list with elements

• mle vector of dimension 2 containing estimated scale and shape parameters

• CI matrix of dimension 2 by 2 containing the 1 − α level confidence intervals for scale and
shape

References

Hitz, A.S., G. Samorodnistsky and R.A. Davis (2024). Discrete Extremes, Journal of Data Science,
22(4), pp. 524-536.

Examples

fitdGPD(rpois(1000,2))
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HTailIndex Hill Tail Index Estimation

Description

Computes a point and interval estimate of the tail index based on the Hill’s estimator.

Usage

HTailIndex(data, k, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
smallBlock=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

k An integer specifying the value of the intermediate sequence kn. See Details.

var If var=TRUE then an estimate of the variance of the tail index estimator is com-
puted.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep"
specifies the variance estimator for serial dependent observations. See Details.

bias A logical value. By default biast=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the tail index.

Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is computed by
applying the Hill estimator. The observations can be either independent or temporal dependent.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the number of k+1 larger order statistics to be used to estimate γ.

• If var=TRUE then an estimate of the asymptotic variance of the Hill estimator is computed.
With independent observations the asymptotic variance is estimated by the formula γ̂2, see
Theorem 3.2.5 of de Haan and Ferreira (2006). This is achieved through varType="asym-Ind".
With serial dependent observations the asymptotic variance is estimated by the formula in
1288 in Drees (2000). This is achieved through varType="asym-Dep". In this latter case the
serial dependence is estimated by exploiting the "big blocks seperated by small blocks" tech-
inque which is a standard tools in time series, see Leadbetter et al. (1986). See also formula
(11) in Drees (2003). The size of the big and small blocks are specified by the parameters
bigBlock and smallBlock, respectively.
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• If bias=TRUE then an estimate of the bias term of the Hill estimator is computed implementing
using formula (4.2) in de Haan et al. (2016). However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.1. Instead for simplicity
standard formulas have been used (see de Haan and Ferreira 2006 Theorem 3.2.5 and Drees
2000 page 1288).

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
γ, with approximate nominal confidence level (1 − α)100%, is computed. The confidence
intervals are computed exploiting the formulas in de Haan and Ferreira (2006) Theorem 3.2.5
and Drees (2000) page 1288. When biast=TRUE the confidence intervals are computed in
the same way but after correcting the tail index estimate by an estimate of the bias term, see
formula (4.2) in de Haan et al. (2016) for details.

Value

A list with elements:

• gammaHat: an estimate of tail index γ;

• VarGamHat: an estimate of the asymptotic variance of the Hill estimator;

• BiasGamHat: an estimate of bias term of the Hill estimator;

• AdjExtQHat: the adjustment to correct the Weissman estimator of an extreme quantile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to

nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag,
New York.

Drees, H. (2000). Weighted approximations of tail processes for

β-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random
sequences and processes. Springer.

See Also

MLTailIndex, MomTailIndex, EBTailIndex

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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Examples

# Tail index estimation based on the Hill estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat1 <- HTailIndex(data, k, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat1$gammaHat
gammaHat1$CIgamHat

# tail index estimation with bias correction
gammaHat2 <- HTailIndex(data, 2*k, TRUE, bias=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat2$gammaHat-gammaHat2$BiasGamHat
gammaHat2$CIgamHat

HypoTesting Wald-Type Hypothesis Testing

Description

Wald-type hypothesis tes for testing equality of high or extreme expectiles and quantiles

Usage

HypoTesting(data, tau, tau1=NULL, type="ExpectRisks", level="extreme",
method="LAWS", bias=FALSE, k=NULL, alpha=0.05)
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Arguments

data A matrix of (n× d) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

type A string specifying the type of test. By default type="ExpectRisks" specifies
the test for testing the equality of expectiles. See Details.

level A string specifying the level of the expectile. This make sense when type="ExpectRisks".
By default level="extreme" specifies that the test concerns expectiles at the
extreme level. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the LAWS based estimator. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the significance level of the test.

Details

With a dataset data of d-dimensional observations and sample size n, a Wald-type hypothesis
testing is performed in order to check whether the is empirical evidence against the null hypoth-
esis. The null hypothesis concerns the equality among the expectiles or quantiles or tail indices
of the marginal distributions. The three tests depend on the depends on the estimation of the d-
dimensional tail index γ. Here, γ is estimated using the Hill estimation (see MultiHTailIndex for
details). The data are regarded as d-dimensional temporal independent observations coming from
dependent variables. See Padoan and Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1
as n → ∞. Practically, for each marginal distribution, τn ∈ (0, 1) is the ratio between N
(Numerator) and D (Denominator). Where N is the empirical mean distance of the τn-th
expectile from the observations smaller than it, and D is the empirical mean distance of τn-th
expectile from all the observations.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. For each marginal distribution, the value (1 − tau′

n) ∈ (0, 1) is meant to be a
small tail probability such that (1 − τ ′n) = 1/n or (1 − τ ′n) < 1/n. It is also assumed that
n(1− τ ′n) → C as n → ∞, where C is a positive finite constant. Typically, C ∈ (0, 1) so it is
expected that there are no observations in a data sample that are greater than the expectile at
the extreme level τ ′n.

• When type="ExpectRisks", the null hypothesis of the hypothesis testing concerns the equal-
ity among the expectiles of the marginal distributions. See Section 3.3 of Padoan and Stupfler
(2020) for details. When type="QuantRisks", the null hypothesis of the hypothesis test-
ing concerns the equality among the quantiles of the marginal distributions. See Section 5 of
Padoan and Stupfler (2020) for details. Note that in this case the test is based on the asymptotic
distribution of normalized quantile estimator in the logarithmic scale. When type="tails",
the null hypothesis of the hypothesis testing concerns the equality among the tail indices of
the marginal distributions. See Sections 3.2 and 3.3 of Padoan and Stupfler (2020) for details.
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• When type="ExpectRisks", the null hypothesis concerns the equality among the expectiles
of the marginal distributions at the intermediate level and this is achieved through level=="inter".
In this case the test is obtained exploiting the asymptotic distribution of relative expectile ap-
propriately normalised. See Section 2.1, 3.1 and 3.3 of Padoan and Stupfler (2020) for details.
Instead, if level=="extreme" the null hypothesis concerns the equality among the expectiles
of the marginal distributions at the extreme level.

• When method='LAWS', then the τ ′n-th d-dimensional expectile is estimated using the LAWS
based estimator. When method='QB', the expectile is instead estimated using the QB esim-
tator. The definition of both estimators depend on the estimation of the d-dimensional tail
index γ. The d-dimensional tail index γ is estimated using the d-dimensional Hill estimator
(tailest='Hill'), see MultiHTailIndex). See Section 2.2 in Padoan and Stupfler (2020) for
details.

• If bias=TRUE then d-dimensional γ is estimated using formula (4.2) of Haan et al. (2016).
This is used by the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated
using the formula in page 330 of de Haan et al. (2016). This provides a bias corrected version
of the Weissman estimator. This is used by the QB estimator. However, in this case the
asymptotic variance is not estimated using the formula in Haan et al. (2016) Theorem 4.2.
Instead, for simplicity the asymptotic variance-covariance matrix is estimated by the formulas
Section 3.2 of Padoan and Stupfler (2020).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, for
each marginal distribution when tau=NULL and method='LAWS' or method='QB', then τn =
1−kn/n is the intermediate level of the expectile to be stimated. When tailest='Hill', for
each marginal distributions, then kn specifies the number of k+1 larger order statistics used
in the definition of the Hill estimator.

• A small value α ∈ (0, 1) specifies the significance level of Wald-type hypothesis testing.

Value

A list with elements:

• logLikR: the observed value of log-likelihood ratio statistic test;

• critVal: the quantile (critical level) of a chi-square distribution with d degrees of freedom
and confidence level α.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate
heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

MultiHTailIndex, predMultiExpectiles, extMultiQuantile

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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Examples

# Hypothesis testing on the equality extreme expectiles based on a sample of
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# Performs Wald-type hypothesis testing
HypoTesting(data, tau, tau1)

# Hypothesis testing on the equality extreme expectiles based on a sample of
# d-dimensional observations simulated from a joint distribution with
# a Clayton copula and different Frechet marginal distributions.

# distributional setting
copula <- "Clayton"
dist <- "Frechet"

# parameter setting
dim <- 3
dep <- 2
scale <- rep(1, dim)
shape <- c(2.1, 3, 4.5)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
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# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# Performs Wald-type hypothesis testing
HypoTesting(data, tau, tau1)

MLTailIndex Maximum Likelihood Tail Index Estimation

Description

Computes a point and interval estimate of the tail index based on the Maximum Likelihood (ML)
estimator.

Usage

MLTailIndex(data, k, var=FALSE, varType="asym-Dep", bigBlock=NULL,
smallBlock=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

k An integer specifying the value of the intermediate sequence kn. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the tail index esti-
mator is computed.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep"
specifies the variance estimator for serial dependent observations. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the tail index.
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Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is computed by
applying the ML estimator. The observations can be either independent or temporal dependent.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the numer of k+1 larger order statistics to be used to estimate γ.

• If var=TRUE then the asymptotic variance of the Hill estimator is computed. With independent
observations the asymptotic variance is estimated by the formula in Theorem 3.4.2 of de Haan
and Ferreira (2006). This is achieved through varType="asym-Ind". With serial dependent
observations the asymptotic variance is estimated by the formula in 1288 in Drees (2000).
This is achieved through varType="asym-Dep". In this latter case the serial dependence is es-
timated by exploiting the "big blocks seperated by small blocks" techinque which is a standard
tools in time series, see Leadbetter et al. (1986). See also formula (11) in Drees (2003). The
size of the big and small blocks are specified by the parameters bigBlock and smallBlock,
respectively.

• Given a small value α ∈ (0, 1) then an asymptotic confidence interval for the tail index, with
approximate nominal confidence level (1− α)100% is computed.

Value

A list with elements:

• gammaHat: an estimate of tail index γ;

• VarGamHat: an estimate of the variance of the ML estimator;

• CIgamHat: an estimate of the approximate (1− α)100% confidence interval for γ.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Drees, H. (2000). Weighted approximations of tail processes for

β-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag,
New York.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random
sequences and processes. Springer.

See Also

HTailIndex, MomTailIndex, EBTailIndex

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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Examples

# Tail index estimation based on the Maximum Likelihood estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- MLTailIndex(data, k, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat$gammaHat
gammaHat$CIgamHat

MomTailIndex Moment based Tail Index Estimation

Description

Computes a point estimate of the tail index based on the Moment Based (MB) estimator.

Usage

MomTailIndex(data, k)

Arguments

data A vector of (1× n) observations.

k An integer specifying the value of the intermediate sequence kn. See Details.
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Details

For a dataset data of sample size n, the tail index γ of its (marginal) distribution is computed by
applying the MB estimator. The observations can be either independent or temporal dependent. For
details see de Haan and Ferreira (2006).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, the
value kn specifies the number of k+1 larger order statistics to be used to estimate γ.

Value

An estimate of the tail index γ.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag,
New York.

See Also

HTailIndex, MLTailIndex, EBTailIndex

Examples

# Tail index estimation based on the Moment estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallblock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- MomTailIndex(data, k)
gammaHat

MultiHTailIndex Multidimensional Hill Tail Index Estimation

Description

Computes point estimates and (1 − α)100% confidence regions estimate of d-dimensional tail in-
dices based on the Hill’s estimator.

Usage

MultiHTailIndex(data, k, var=FALSE, varType="asym-Dep", bias=FALSE,
alpha=0.05, plot=FALSE)

Arguments

data A matrix of (n× d) observations.

k An integer specifying the value of the intermediate sequence kn. See Details.

var If var=TRUE then an estimate of the variance-covariance matrix of the tail indices
estimators is computed.

varType A string specifying the asymptotic variance to compute. By default varType="asym-Dep"
specifies the variance estimator for d dependent marginal variables. See Details.

bias A logical value. By default biast=FALSE specifies that no bias correction is
computed. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the tail index.

plot A logical value. By default plot=FALSE specifies that no graphical representa-
tion of the estimates is provided. See Details.

Details

For a dataset data of (n× d) observations, where d is the number of variables and n is the sample
size, the tail index γ of the d marginal distributions is estimated by applying the Hill estimator.
Together with a point estimate a (1−α)100% confidence region is computed. The data are regarded
as d-dimensional temporal independent observations coming from dependent variables.

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically,
the value kn specifies the number of k+1 larger order statistics to be used to estimate each
marginal tail index γj for j = 1, . . . , d.
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• If var=TRUE then an estimate of the asymptotic variance-covariance matrix of the multi-
variate Hill estimator is computed. With independent observations the asymptotic variance-
covariance matrix is estimated by the matrix Σ̂LAWS

j,ℓ (γ,R)(1, 1), see bottom formula in page
14 of Padoan and Stupfler (2020). This is achieved through varType="asym-Dep" which
means d dependent marginal variables. When varType="asym-Ind" d marginal variables are
regarded as independent and the returned variance-covariance matrix Σ̂LAWS

j,ℓ (γ,R)(1, 1) is a
diagonal matrix with only variance terms.

• If bias=TRUE then an estimate of the bias term of the Hill estimator is computed implementing
using formula (4.2) in de Haan et al. (2016). In this case the asymptotic variance is not
estimated using the formula in Haan et al. (2016) Theorem 4.1 but instead for simplicity the
formula at the bottom of page 14 in Padoan and Stupfler (2020) is still used.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence region for γj ,
for j = 1, . . . , d, with approximate nominal confidence level (1 − α)100%, is computed.
The confidence intervals are computed exploiting the asymptotic normality of multivariate
Hill estimator appropriately normalized (the logarithmic scale is not used), see Padoan and
Stupfler (2020) for details.

• If plot=TRUE then a graphical representation of the estimates is not provided.

Value

A list with elements:

• gammaHat: an estimate of the d tail indices γj , for j = 1, . . . , d;

• VarCovGHat: an estimate of the asymptotic variance-covariance matrix of the multivariate Hill
estimator;

• biasTerm: an estimate of bias term of the multivariate Hill estimator;

• EstConReg: an estimate of the (1− α)100% confidence region.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate
heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to financial time
series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag,
New York.

See Also

HTailIndex, rmdata

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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Examples

# Tail index estimation based on the multivariate Hill estimator obtained with
# n observations simulated from a d-dimensional random vector with a multivariate
# distribution with equal Frechet margins and a Clayton copula.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Clayton"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Number of larger order statistics
k <- 150

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Clayton copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# tail indices estimation
est <- MultiHTailIndex(data, k, TRUE)
est$gammaHat
est$VarCovGHat
# run the following command to see the graphical representation
## Not run:
est <- MultiHTailIndex(data, k, TRUE, plot=TRUE)

## End(Not run)

plotBayes Plot empirical Bayes inference results for continuous and discrete gen-
eralized Pareto distribution

Description

Given a sample of posterior draws of the scale or shape parameter, return a histogram on the density
scale for the posterior distribution along with a theoretical prior and posterior comparison curve
based on the MLE, pointwise Wald-based normal 95% confidence intervals for the mean of the
sample, and pointwise credible intervals (asymmetric by design).



48 plotBayes

Usage

plotBayes(
x,
mle,
alpha = 0.05,
param = c("scale", "shape"),
cols = c("mediumseagreen", "goldenrod", "gold4"),
...

)

Arguments

x a vector of posterior samples

mle vector of length 2 containing the maximum likelihood estimator for the scale
and shape parameters, respectively (only used if param="scale")

alpha level for intervals. Default to 0.05 giving 95% confidence intervals

param character string indicating the parameter. Default: c("scale", "shape")

cols vector of length three containing colors for posterior mean, confidence inter-
vals, and credible intervals. Default to c("mediumseagreen", "goldenrod",
"gold4")

... additional arguments for plotting function; only xlab is allowed

Value

NULL; used to create a plot

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n, 0, 3, 4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp, decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(samp, threshold)
# empirical bayes procedure
proc <- estPOT(
samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

plotBayes(
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proc$post_sample[,1],
mlest$estimate,
param = "scale")

plotBayes(
proc$post_sample[,2],
param = "shape")

## End(Not run)

predDens Predictive posterior density of peak-over-threshold models

Description

Given posterior samples for the parameters of the continuous or discrete generalized Pareto distri-
bution, return the predictive posterior density of a peak above an intermediate or extreme threshold
using the threshold stability property.

Usage

predDens(
x,
postsamp,
threshold,
type = c("continuous", "discrete"),
extrapolation = FALSE,
p,
k,
n

)

Arguments

x vector of length r containing the points at which to evaluate the density

postsamp a m by 2 matrix with columns containing the posterior samples of scale and shape
parameters of the generalized Pareto distribution, respectively

threshold threshold for the generalized Pareto model, corresponding to the n − kth order
statistic of the sample

type data type, either "continuous" or "discrete" for count data.

extrapolation logical; if TRUE, extrapolate using the threshold stability property

p scalar tail probability for the extrapolation. Must be smaller than k/n (only used
if extrapolation=TRUE)

k integer, number of exceedances for the generalized Pareto (only used if extrapolation=TRUE)

n integer, number of observations in the full sample. Must be greater than k (only
used if extrapolation=TRUE)
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Value

a vector of length r of posterior predictive density values associated to x

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n,0,3,4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp,decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(samp, threshold)
# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

# predictive density estimation
yg <- seq(0, 50, by = 2)
nyg <- length(yg)
predDens_int <- predDens(

yg,
proc$post_sample,
proc$t,
"continuous",
extrapolation = FALSE)

predDens_ext <- predDens(
yg,
proc$post_sample,
proc$t,
"continuous",
extrapolation = TRUE,
p = 0.001,
k = k,
n = n)

# plot
plot(
x = yg,
y = predDens_int,
type = "l",
lwd = 2,
col = "dodgerblue",
ylab = "",
main = "Predictive posterior density")
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lines(
x = yg,
y = predDens_ext,
lwd = 2,
col = "violet")

legend(
"topright",
legend = c("Intermediate threshold", "Extreme threshold"),
lwd = 2,
col = c("dodgerblue", "violet"))

## End(Not run)

predDensx Conditional predictive posterior density of peaks-over-threshold mod-
els

Description

Given posterior samples for the parameters of the continuous or discrete generalized Pareto distri-
bution and scedasis function for a set of covariates, evaluated at every draw of the latter, return the
predictive posterior density of a peak above an intermediate or extreme threshold using the threshold
stability property.

Usage

predDensx(
x,
postsamp,
scedasis,
threshold,
type = c("continuous", "discrete"),
extrapolation = FALSE,
p,
k,
n

)

Arguments

x vector of length r containing the points at which to evaluate the density

postsamp a m by 2 matrix with columns containing the posterior samples of scale and shape
parameters of the generalized Pareto distribution, respectively

scedasis an m by p matrix, obtained by evaluating the scedasis function for every of the p
covariate values and every m posterior draw

threshold threshold for the generalized Pareto model, corresponding to the n − kth order
statistic of the sample
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type data type, either "continuous" or "discrete" for count data.

extrapolation logical; if TRUE, extrapolate using the threshold stability property

p scalar tail probability for the extrapolation. Must be smaller than k/n (only used
if extrapolation=TRUE)

k integer, number of exceedances for the generalized Pareto (only used if extrapolation=TRUE)

n integer, number of observations in the full sample. Must be greater than k (only
used if extrapolation=TRUE)

Value

a list with components

• x the vector at which the posterior density is evaluated

• preddens an r by p matrix of predictive density corresponding to each combination of x and
scedasis value

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n,0,1:n,4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp,decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(samp, threshold, control=list(maxit = 500))
# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

# conditional predictive density estimation
yg <- seq(0, 50, by = 2)
nyg <- length(yg)
# estimation of scedasis function
# setting
M <- 1e3
C <- 5
alpha <- 0.05
bw <- .5
nsim <- 5000
burn <- 1000
# create covariate
# in sample obs
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n_in = n
# number of years ahead
nY = 1
n_out = 365 * nY
# total obs
n_tot = n_in + n_out
# total covariate (in+out sample period)
x <- seq(0, 1, length = n_tot)
# in sample grid dimension for covariate
ng_in <- 150
xg <- seq(0, x[n_in], length = ng_in)
# in+out of sample grid
xg <- c(xg, seq(x[n_in + 1], x[(n_tot)], length = ng_in))
# in+out sample grid dimension
nxg <- length(xg)
xg <- array(xg, c(nxg, 1))
# in sample observations
samp_in <- samp[1:n_in]
ssamp_in <- sort(samp_in, decreasing = TRUE, index = TRUE)
x_in <- x[1:n_in] # in sample covariate
xs <- x_in[ssamp_in$ix[1:k]] # in sample concomitant covariate
# estimate scedasis function over the in and out of sample period
res_stat <- apply(

xg,
1,
cpost_stat,
N = nsim - burn,
x = x_in,
xs = xs,
bw = bw,
k = k,
C = C

)
# conditional predictive posterior density
yg <- seq(500, 5000, by = 100)
nyg = length(yg)
# intermediate threshold
predDens_intx <- predDensx(

x = yg,
postsamp = proc$post_sample,
scedasis = res_stat,
threshold = proc$t,
"continuous",
extrapolation = FALSE)

# extreme threshold
predDens_extx <- predDensx(

x = yg,
postsamp = proc$post_sample,
scedasis = res_stat,
threshold = proc$t,
"continuous",
extrapolation = TRUE,
p = 0.001,
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k = k,
n = n)

# plot intermediate and extreme density conditional on a specific value of scedasis function
# disclaimer: to speed up the procedure, we specify a coarse grid
plot(
x = predDens_intx$x,
y = predDens_intx$preddens[,20],
type = "l",
lwd = 2,
col="dodgerblue",
ylab = "",
xlab = "yg",
main = "Conditional predictive posterior density")

lines(
x = predDens_extx$x,
y = predDens_extx$preddens[,20],
lwd = 2,
col = "violet")

legend("topright",
legend = c("Intermediate threshold","Extreme threshold"),
lwd = 2,
col = c("dodgerblue", "violet"))

## End(Not run)

predExpectiles Extreme Expectile Estimation

Description

Computes a point and interval estimate of the expectile at the extreme level (Expectile Prediction).

Usage

predExpectiles(data, tau, tau1, method="LAWS", tailest="Hill", var=FALSE,
varType="asym-Dep", bias=FALSE, bigBlock=NULL, smallBlock=NULL,
k=NULL, alpha_n=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the LAWS based estimator. See Details.

tailest A string specifying the tail index estimator. By default tailest="Hill" speci-
fies the use of Hill estimator. See Details.
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var If var=TRUE then an estimate of the asymptotic variance of the expectile estima-
tor is computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.
alpha_n A real in (0, 1) specifying the quantile’s extreme level to be use in order to

estimate the expectile’s extreme level.
alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate

confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the τ ′n-th expectile is computed. The estimation
of the expectile at the extreme level tau1 (τ ′n) is meant to be a prediction beyond the observed sam-
ple. Two estimators are available: the so-called Least Asymmetrically Weighted Squares (LAWS)
based estimator and the Quantile-Based (QB) estimator. The definition of both estimators depends
on the estimation of the tail index γ. Here, γ is estimated using the Hill estimation (see HTailIndex
for details) or in alternative using the the expectile based estimator (see EBTailIndex). The obser-
vations can be either independent or temporal dependent. See Section 3.2 in Padoan and Stupfler
(2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. Practically, τn ∈ (0, 1) is the ratio between N (Numerator) and D (Denominator).
Where N is the empirical mean distance of the τn-th expectile from the observations smaller
than it, and D is the empirical mean distance of τn-th expectile from all the observations.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. The value (1 − tau′

n) ∈ (0, 1) is meant to be a small tail probability such that
(1 − τ ′n) = 1/n or (1 − τ ′n) < 1/n. It is also assumed that n(1 − τ ′n) → C as n → ∞,
where C is a positive finite constant. Typically, C ∈ (0, 1) so it is expected that there are no
observations in a data sample that are greater than the expectile at the extreme level τ ′n.

• When method='LAWS', then the τ ′n-th expectile is estimated using the LAWS based estimator.
When method='QB', the expectile is instead estimated using the QB esimtator. The definition
of both estimators depend on the estimation of the tail index γ. When tailest='Hill' then
γ is estimated using the Hill estimator (see HTailIndex). When tailest='ExpBased', then γ
is estimated using the expectile based estimator (see EBTailIndex). See Section 3.2 in Padoan
and Stupfler (2020) for details.

• If var=TRUE then an esitmate of the asymptotic variance of the tau′
n-th expectile is com-

puted. Notice that the estimation of the asymptotic variance is only available when γ is es-
timated using the Hill estimator (see HTailIndex). With independent observations the asymp-
totic variance is estimated by γ̂2, see the remark below Theorem 3.5 in Padoan and Stupfler
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(2020). This is achieved through varType="asym-Ind". With serial dependent observations
the asymptotic variance is estimated by the formula in Throrem 3.5 of Padoan and Stupfler
(2020). This is achieved through varType="asym-Dep". See Section 3.2 in Padoan and
Stupfler (2020) for details. In this latter case the computation of the serial dependence is
based on the "big blocks seperated by small blocks" techinque which is a standard tools in
time series, see e.g. Leadbetter et al. (1986). The size of the big and small blocks are speci-
fied by the parameters bigBlock and smallBlock, respectively.

• If bias=TRUE then γ is estimated using formula (4.2) of Haan et al. (2016). This is used by
the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated using the formula
in page 330 of de Haan et al. (2016). This provides a bias corrected version of the Weissman
estimator. This is used by the QB estimator. However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.2. Instead, for simplicity
the asymptotic variance is estimated by the formula in Corollary 3.8, with serial dependent
observations, and γ̂2 with independent observation (see e.g. de Drees 2000, for the details).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, when
tau=NULL and method='LAWS', then τn = 1− kn/n is the intermediate level of the expectile
to be stimated. The latter is also used to estimate the tail index when tailest='ExpBased'.
Instead, if tailest='Hill', then kn specifies the number of k+1 larger order statistics used
in the definition of the Hill estimator. Differently, When tau=NULL and method='QB', then
τn = 1 − kn/n is the intermediate level of the quantile to be stimated and of the expectile to
be stimated when tailest='ExpBased'. Instead, when tailest='Hill' it is the numer of
k+1 larger order statistics used in the definition of the Hill estimator.

• If quantile’s extreme level is provided by alpha_n, then expectile’s extreme level tau′
n(αn) is

replaced by tau′
n(αn) which is esitmated using the method described in Section 6 of Padoan

and Stupfler (2020). See estExtLevel for details.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for tau′
n-

th expectile, with approximate nominal confidence level (1 − α)100%, is computed. The
confidence intervals are computed exploiting formula (10) and (11) in Padoan and Stupfler
(2020) and (46) in Drees (2003). See Section 5 in Padoan and Stupfler (2020) for details.
When biast=TRUE confidence intervals are computed in the same way but after correcting the
tail index estimate by an estimate of the bias term, see formula (4.2) in de Haan et al. (2016)
for details.

Value

A list with elements:

• EExpcHat: an estimate of the τ ′n-th expecile;

• VarExtHat: an estimate of the asymptotic variance of the expectile estimator;

• CIExpct: an estimate of the approximate (1−α)100% confidence interval for τ ′n-th expecile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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See Also

HTailIndex, EBTailIndex, estExpectiles, extQuantile

Examples

# Extreme expectile estimation at the extreme level tau1 obtained with
# 1-dimensional data simulated from an AR(1) with univariate
# Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# Extreme expectile estimation
expectHat1 <- predExpectiles(data, tau, tau1, var=TRUE, bigBlock=bigBlock,
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smallBlock=smallBlock)
expectHat1$EExpcHat
expectHat1$CIExpct
# Extreme expectile estimation with bias correction
tau <- 0.80
expectHat2 <- predExpectiles(data, tau, tau1, "QB", var=TRUE, bias=TRUE, bigBlock=bigBlock,
smallBlock=smallBlock)

expectHat2$EExpcHat
expectHat2$CIExpct

predMultiExpectiles Multidimensional Extreme Expectile Estimation

Description

Computes point estimates and (1 − α)100% confidence regions for d-dimensional expectile at the
extreme level (Expectile Prediction).

Usage

predMultiExpectiles(data, tau, tau1, method="LAWS", tailest="Hill", var=FALSE,
varType="asym-Ind-Adj-Log", bias=FALSE, k=NULL, alpha=0.05,
plot=FALSE)

Arguments

data A matrix of (n× d) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

method A string specifying the method used to estimate the expecile. By default est="LAWS"
specifies the use of the LAWS based estimator. See Details.

tailest A string specifying the tail index estimator. By default tailest="Hill" speci-
fies the use of Hill estimator. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the expectile estima-
tor is computed.

varType A string specifying the type of asymptotic variance-covariance matrix to com-
pute. By default varType="asym-Ind-Adj-Log" specifies that the variance-
covariance matrix is computed assuming dependent variables and exploiting the
log scale and a suitable adjustment. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence region for the d-dimensional expecile at the extreme level.

plot A logical value. By default plot=FALSE specifies that no graphical representa-
tion of the estimates is provided. See Details.
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Details

For a dataset data of d-dimensional observations and sample size n, an estimate of the τ ′n-th
d-dimensional expectile is computed. The estimation of the d-dimensional expectile at the ex-
treme level tau1 (τ ′n) is meant to be a prediction beyond the observed sample. Two estimators are
available: the so-called Least Asymmetrically Weighted Squares (LAWS) based estimator and the
Quantile-Based (QB) estimator. The definition of both estimators depends on the estimation of the
d-dimensional tail index γ. Here, γ is estimated using the Hill estimation (see MultiHTailIndex for
details). The data are regarded as d-dimensional temporal independent observations coming from
dependent variables. See Padoan and Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1
as n → ∞. Practically, for each marginal distribution, τn ∈ (0, 1) is the ratio between N
(Numerator) and D (Denominator). Where N is the empirical mean distance of the τn-th
expectile from the observations smaller than it, and D is the empirical mean distance of τn-th
expectile from all the observations.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. For each marginal distribution, the value (1 − tau′

n) ∈ (0, 1) is meant to be a
small tail probability such that (1 − τ ′n) = 1/n or (1 − τ ′n) < 1/n. It is also assumed that
n(1− τ ′n) → C as n → ∞, where C is a positive finite constant. Typically, C ∈ (0, 1) so it is
expected that there are no observations in a data sample that are greater than the expectile at
the extreme level τ ′n.

• When method='LAWS', then the τ ′n-th d-dimensional expectile is estimated using the LAWS
based estimator. When method='QB', the expectile is instead estimated using the QB esim-
tator. The definition of both estimators depend on the estimation of the d-dimensional tail
index γ. The d-dimensional tail index γ is estimated using the d-dimensional Hill estimator
(tailest='Hill'), see MultiHTailIndex). This is the only available option so far (soon more
results will be available). See Section 2.2 in Padoan and Stupfler (2020) for details.

• If var=TRUE then an estimate of the asymptotic variance-covariance matrix of the tau′
n-th

d-dimensional expectile is computed. Notice that the estimation of the asymptotic variance-
covariance matrix is only available when γ is estimated using the Hill estimator (see MultiH-
TailIndex). The data are regarded as temporal independent observations coming from depen-
dent variables. The asymptotic variance-covariance matrix is estimated exploiting the formu-
las in Section 3.2 of Padoan and Stupfler (2020). The variance-covariance matrix is computed
exploiting the asymptotic behaviour of the normalized expectile estimator which is expressed
in logarithmic scale. In addition, a suitable adjustment is considered. This is achieved through
varType="asym-Ind-Adj-Log". The data can also be regarded as d-dimensional temporal
independent observations coming from independent variables. In this case the asymptotic
variance-covariance matrix is diagonal and is also computed exploiting the formulas in Sec-
tion 3.2 of Padoan and Stupfler (2020). This is achieved through varType="asym-Ind-Log".
If varType="asym-Ind-Adj", then the variance-covariance matrix is computed exploiting
the asymptotic behaviour of the relative expectile estimator appropriately normalized and ex-
ploiting a suitable adjustment. This concerns the case of dependent variables. The case of
independent variables is achieved through varType="asym-Ind".

• If bias=TRUE then d-dimensional γ is estimated using formula (4.2) of Haan et al. (2016).
This is used by the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated
using the formula in page 330 of de Haan et al. (2016). This provides a bias corrected version
of the Weissman estimator. This is used by the QB estimator. However, in this case the
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asymptotic variance is not estimated using the formula in Haan et al. (2016) Theorem 4.2.
Instead, for simplicity the asymptotic variance-covariance matrix is estimated by the formulas
Section 3.2 of Padoan and Stupfler (2020).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents a
sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Practically, for
each marginal distribution when tau=NULL and method='LAWS' or method='QB', then τn =
1−kn/n is the intermediate level of the expectile to be stimated. When tailest='Hill', for
each marginal distributions, then kn specifies the number of k+1 larger order statistics used
in the definition of the Hill estimator.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence region for tau′
n-th

d-dimensional expectile, with approximate nominal confidence level (1 − α)100%, is com-
puted. The confidence regions are computed exploiting the formulas in Section 3.2 of Padoan
and Stupfler (2020). If varType="asym-Ind-Adj-Log", then an "asymmetric" confidence
regions is computed exploiting the asymptotic behaviour of the normalized expectile estima-
tor in logarithmic scale and using a suitable adjustment. This choice is recommended. If
varType="asym-Ind-Adj", then the a "symmetric" confidence regions is computed exploit-
ing the asymptotic behaviour of the relative explectile estimator appropriately normalized.

• If plot=TRUE then a graphical representation of the estimates is not provided.

Value

A list with elements:

• ExpctHat: an estimate of the τ ′n-th d-dimensional expecile;

• biasTerm: an estimate of the bias term of yje τ ′n-th d-dimensional expecile;

• VarCovEHat: an estimate of the asymptotic variance-covariance of the d-dimensional expec-
tile estimator;

• EstConReg: an estimate of the approximate (1 − α)100% confidence regions for τ ′n-th d-
dimensional expecile.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate
heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

MultiHTailIndex, estMultiExpectiles, extMultiQuantile
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Examples

# Extreme expectile estimation at the extreme level tau1 obtained with
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# High d-dimensional expectile (intermediate level) estimation
expectHat <- predMultiExpectiles(data, tau, tau1, var=TRUE)

expectHat$ExpctHat
expectHat$VarCovEHat
# run the following command to see the graphical representation
## Not run:
expectHat <- predMultiExpectiles(data, tau, tau1, var=TRUE, plot=TRUE)

## End(Not run)

predQuant Predictive quantile based on the generalized Pareto model

Description

Bayesian Generalize Pareto-based predictive quantile for continuous and discrete predictive distri-
bution conditioned on intermediate and extreme levels.
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Usage

predQuant(
qlev,
postsamp,
threshold,
lb,
ub,
type = c("continuous", "discrete"),
extrapolation = FALSE,
p,
k,
n

)

Arguments

qlev double, quantile level

postsamp a m by 2 matrix with columns containing the posterior samples of scale and shape
parameters of the generalized Pareto distribution, respectively

threshold threshold for the generalized Pareto model, corresponding to the n − kth order
statistic of the sample

lb double, the lower bound of the admissible region for the quantile value

ub double, the upper bound of the admissible region for the quantile value

type data type, either "continuous" or "discrete" for count data.

extrapolation logical; if TRUE, extrapolate using the threshold stability property

p scalar tail probability for the extrapolation. Must be smaller than k/n (only used
if extrapolation=TRUE)

k integer, number of exceedances for the generalized Pareto (only used if extrapolation=TRUE)

n integer, number of observations in the full sample. Must be greater than k (only
used if extrapolation=TRUE)

Value

a double indicating the value of the quantile

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n,0,3,4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp,decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(samp, threshold)
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# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

# predictive density estimation
yg <- seq(0, 50, by = 2)
nyg <- length(yg)
predDens_int <- predDens(

yg,
proc$post_sample,proc$t,
"continuous",
extrapolation=FALSE)

predQuant_int <- predQuant(
0.5,
proc$post_sample,
proc$t,
proc$t + 0.01,
50,
"continuous",
extrapolation = FALSE)

predDens_ext <- predDens(
yg,
proc$post_sample,
proc$t,
"continuous",
extrapolation = TRUE,
p = 0.001,
k = k,
n = n)

predQuant_ext <- predQuant(
0.5,
proc$post_sample,
proc$t,
proc$t + 0.01,
100,
"continuous",
extrapolation = TRUE,
p = 0.005,
k = k,
n = n)

## End(Not run)

QuantMES Marginal Expected Shortfall Quantile Based Estimation
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Description

Computes a point and interval estimate of the Marginal Expected Shortfall (MES) using a quantile
based approach.

Usage

QuantMES(data, tau, tau1, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data A vector of (1× n) observations.

tau A real in (0, 1) specifying the intermediate level τn. See Details.

tau1 A real in (0, 1) specifying the extreme level τ ′n. See Details.

var If var=TRUE then an estimate of the asymptotic variance of the MES estimator
is computed.

varType A string specifying the type of asymptotic variance to compute. By default
varType="asym-Dep" specifies the variance estimator for serial dependent ob-
servations. See Details.

bias A logical value. By default bias=FALSE specifies that no bias correction is
computed. See Details.

bigBlock An interger specifying the size of the big-block used to estimaste the asymptotic
variance. See Details.

smallBlock An interger specifying the size of the small-block used to estimaste the asymp-
totic variance. See Details.

k An integer specifying the value of the intermediate sequence kn. See Details.

alpha A real in (0, 1) specifying the confidence level (1−α)100% of the approximate
confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the τ ′n-th MES is computed. The estimation of
the MES at the extreme level tau1 (τ ′n) is indeed meant to be a prediction. Estimates are obtained
through the quantile based estimator defined in page 12 of Padoan and Stupfler (2020). Such an
estimator depends on the estimation of the tail index γ. Here, γ is estimated using the Hill estimation
(see HTailIndex for details). The observations can be either independent or temporal dependent. See
Section 4 in Padoan and Stupfler (2020) for details.

• The so-called intermediate level tau or τn is a sequence of positive reals such that τn → 1 as
n → ∞. See predExpectiles for details.

• The so-called extreme level tau1 or τ ′n is a sequence of positive reals such that τ ′n → 1 as
n → ∞. See predExpectiles for details.

• If var=TRUE then an esitmate of the asymptotic variance of the tau′
n-th MES is computed.

Notice that the estimation of the asymptotic variance is only available when γ is estimated
using the Hill estimator (see HTailIndex). With independent observations the asymptotic vari-
ance is estimated by γ̂2, see Corollary 4.3 in Padoan and Stupfler (2020). This is achieved
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through varType="asym-Ind". With serial dependent observations the asymptotic variance
is estimated by the formula in Corollary 4.2 of Padoan and Stupfler (2020). This is achieved
through varType="asym-Dep". See Section 4 and 5 in Padoan and Stupfler (2020) for details.
In this latter case the computation of the serial dependence is based on the "big blocks seper-
ated by small blocks" techinque which is a standard tools in time series, see e.g. Leadbetter et
al. (1986). The size of the big and small blocks are specified by the parameters bigBlock and
smallBlock, respectively.

• If bias=TRUE then γ is estimated using formula (4.2) of Haan et al. (2016). This is used by
the LAWS and QB estimators. Furthermore, the τ ′n–th quantile is estimated using the formula
in page 330 of de Haan et al. (2016). This provides a bias corrected version of the Weissman
estimator. This is used by the QB estimator. However, in this case the asymptotic variance
is not estimated using the formula in Haan et al. (2016) Theorem 4.2. Instead, for simplicity
the asymptotic variance is estimated by the formula in Corollary 3.8, with serial dependent
observations, and γ̂2 with independent observation (see e.g. de Drees 2000, for the details).

• k or kn is the value of the so-called intermediate sequence kn, n = 1, 2, . . .. Its represents
a sequence of positive integers such that kn → ∞ and kn/n → 0 as n → ∞. kn specifies
the number of k+1 larger order statistics used in the definition of the Hill estimator (see
HTailIndex for details).

• If the quantile’s extreme level is provided by alpha_n, then expectile’s extreme level tau′
n is

replaced by tau′
n(αn) which is estimated by the method described in Section 6 of Padoan and

Stupfler (2020). See estExtLevel for details.

• Given a small value α ∈ (0, 1) then an estimate of an asymptotic confidence interval for
tau′

n-th expectile, with approximate nominal confidence level (1 − α)100%, is computed.
The confidence intervals are computed exploiting formula in Corollary 4.2, Theorem 6.2 of
Padoan and Stupfler (2020) and (46) in Drees (2003). See Sections 4-6 in Padoan and Stupfler
(2020) for details. When biast=TRUE confidence intervals are computed in the same way but
after correcting the tail index estimate by an estimate of the bias term, see formula (4.2) in de
Haan et al. (2016) for details.

Value

A list with elements:

• HatQMES: an estimate of the τ ′n-th quantile based MES;

• VarHatQMES: an estimate of the asymptotic variance of the quantile based MES estimator;

• CIHatQMES: an estimate of the approximate (1− α)100% confidence interval for τ ′n-th MES.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/
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See Also

ExpectMES, HTailIndex, predExpectiles, extQuantile

Examples

# Marginl Expected Shortfall quantile based estimation at the extreme level
# obtained with 2-dimensional data simulated from an AR(1) with bivariate
# Student-t distributed innovations

tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)

# Extreme MES expectile based estimation
MESHat <- QuantMES(data, NULL, tau1, var=TRUE, k=150, bigBlock=bigBlock,

smallBlock=smallBlock)
MESHat
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rbtimeseries Simulation of Two-Dimensional Temporally Dependent Observations

Description

Simulates samples from parametric families of bivariate time series models.

Usage

rbtimeseries(ndata, dist="studentT", type="AR", copula="Gumbel", par, burnin=1e+03)

Arguments

ndata A positive interger specifying the number of observations to simulate.

dist A string specifying the parametric family of the innovations distribution. By
default dist="studentT" specifies a Student-t family of distributions. See De-
tails.

type A string specifying the type of time series. By default type="AR" specifies a
linear Auto-Regressive time series. See Details.

copula A string specifying the type copula to be used. By default copula="Gumbel"
specifies the Gumbel copula. See Details.

par A list of p parameters to be specified for the bivariate time series parametric
family. See Details.

burnin A positive interger specifying the number of initial observations to discard from
the simulated sample.

Details

For a time series class (type), with a parametric family (dist) for the innovations, a sample of size
ndata is simulated. See for example Brockwell and Davis (2016).

• The available categories of bivariate time series models are: Auto-Regressive (type="AR"),
Auto-Regressive and Moving-Average (type="ARMA"), Generalized-Autoregressive-Conditional-
Heteroskedasticity (type="GARCH") and Auto-Regressive.

• With AR(1) times series the available families of distributions for the innovations and the
dependence structure (copula) are:

– Student-t (dist="studentT" and copula="studentT") with marginal parameters (equal
for both distributions): ϕ ∈ (−1, 1) (autoregressive coefficient), ν > 0 (degrees of free-
dom) and dependence parameter dep ∈ (−1, 1). The parameters are specified as par <-
list(corr, df, dep);

– Asymmetric Student-t (dist="AStudentT" and copula="studentT") with marginal pa-
rameters (equal for both distributions): ϕ ∈ (−1, 1) (autoregressive coefficient), ν > 0
(degrees of freedom) and dependence parameter dep ∈ (−1, 1). The paraters are speci-
fied as par <- list(corr, df, dep). Note that in this case the tail index of the lower and
upper tail of the first marginal are different, see Padoan and Stupfler (2020) for details;
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• With ARMA(1,1) times series the available families of distributions for the innovations and
the dependence structure (copula) are:

– symmetric Pareto (dist="double-Pareto" and copula="Gumbel" or copula="Gaussian")
with marginal parameters (equal for both distributions): ϕ ∈ (−1, 1) (autoregressive co-
efficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), and dependence
parameter dep (dep > 0 if copula="Gumbel" or dep ∈ (−1, 1) if copula="Gaussian").
The parameters are specified as par <- list(corr, scale, shape, smooth, dep).

– symmetric Pareto (dist="double-Pareto" and copula="Gumbel" or copula="Gaussian")
with marginal parameters (equal for both distributions): ϕ ∈ (−1, 1) (autoregressive co-
efficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), and dependence
parameter dep (dep > 0 if copula="Gumbel" or dep ∈ (−1, 1) if copula="Gaussian").
The parameters are specified as par <- list(corr, scale, shape, smooth, dep). Note
that in this case the tail index of the lower and upper tail of the first marginal are different,
see Padoan and Stupfler (2020) for details;

• With ARCH(1)/GARCH(1,1) time series the distribution of the innovations are symmetric
Gaussian (dist="Gaussian") or asymmetric Gaussian dist="AGaussian". In both cases the
marginal parameters (equal for both distributions) are: α0, α1, β. In the asymmetric Gaussian
case the tail index of the lower and upper tail of the first marginal are different, see Padoan
and Stupfler (2020) for details. The available copulas are: Gaussian (copula="Gaussian")
with dependence parameter dep ∈ (−1, 1), Student-t (copula="studentT") with dependence
parameters dep ∈ (−1, 1) and ν > 0 (degrees of freedom), Gumbel (copula="Gumbel")
with dependence parameter dep > 0. The parameters are specified as par <- list(alpha0,
alpha1, beta, dep) or par <- list(alpha0, alpha1, beta, dep, df).

Value

A vector of (2× n) observations simulated from a specified bivariate time series model.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Brockwell, Peter J., and Richard A. Davis. (2016). Introduction to time series and forecasting.
Springer.

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

See Also

rtimeseries, expectiles

Examples

# Data simulation from a 2-dimensional AR(1) with bivariate Student-t distributed
# innovations, with one marginal distribution whose lower and upper tail indices
# that are different

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)

# Extreme expectile estimation
plot(data, pch=21)
plot(data[,1], type="l")
plot(data[,2], type="l")

rmdata Simulation of d-Dimensional Temporally Independent Observations

Description

Simulates samples of independent d-dimensional observations from parametric families of joint
distributions with a given copula and equal marginal distributions.

Usage

rmdata (ndata, dist="studentT", copula="studentT", par)

Arguments

ndata A positive interger specifying the number of observations to simulate.

dist A string specifying the parametric family of equal marginal distributions. By
default dist="studentT" specifies a Student-t family of distributions. See De-
tails.

copula A string specifying the type copula to be used. By default copula="studentT"
specifies the Student-t copula. See Details.

par A list of p parameters to be specified for the multivariate parametric family of
distributions. See Details.
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Details

For a joint multivariate distribution with a given parametric copula class (copula) and a given
parametric family of equal marginal distributions (dist), a sample of size ndata is simulated.

• The available copula classes are: Student-t (copula="studentT") with ν > 0 degrees of
freedom (df) and scale parameters ρi,j ∈ (−1, 1) for i ̸= j = 1, . . . , d (sigma), Gaus-
sian (copula="Gaussian") with correlation parameters ρi,j ∈ (−1, 1) for i ̸= j = 1, . . . , d
(sigma), Clayton (copula="Clayton") with dependence parameter θ > 0 (dep), Gumbel
(copula="Gumbel") with dependence parameter θ ≥ 1 (dep) and Frank (copula="Frank")
with dependence parameter θ > 0 (dep).

• The available families of marginal distributions are:

– Student-t (dist="studentT") with ν > 0 degrees of freedom (df);
– Asymmetric Student-t (dist="AStudentT") with ν > 0 degrees of freedom (df). In this

case all the observations are only positive;
– Frechet (dist="Frechet") with scale σ > 0 (scale) and shape α > 0 (shape) parame-

ters.
– Frechet (dist="double-Frechet") with scale σ > 0 (scale) and shape α > 0 (shape)

parameters. In this case positive and negative observations are allowed;
– symmetric Pareto (dist="double-Pareto") with scale σ > 0 (scale) and shape α > 0

(shape) parameters. In this case positive and negative observations are allowed.

• The available classes of multivariate joint distributions are:

– studentT-studentT (dist="studentT" and copula="studentT") with parameters par <-
list(df, sigma);

– studentT (dist="studentT" and copula="None" with parameters par <- list(df, dim).
In this case the d variables are regarded as independent;

– studentT-AstudentT (dist="AstudentT" and copula="studentT") with parameters par
<- list(df, sigma, shape);

– Gaussian-studentT (dist="studentT" and copula="Gaussian") with parameters par
<- list(df, sigma);

– Gaussian-AstudentT (dist="AstudentT" and copula="Gaussian") with parameters par
<- list(df, sigma, shape);

– Frechet (dist="Frechet" and copula="None") with parameters par <- list(shape,
dim). In this case the d variables are regarded as independent;

– Clayton-Frechet (dist="Frechet" and copula="Clayton") with parameters par <- list(dep,
dim, scale, shape);

– Gumbel-Frechet (dist="Frechet" and copula="Gumbel") with parameters par <- list(dep,
dim, scale, shape);

– Frank-Frechet (dist="Frechet" and copula="Frank") with parameters par <- list(dep,
dim, scale, shape);

– Clayton-double-Frechet (dist="double-Frechet" and copula="Clayton") with param-
eters par <- list(dep, dim, scale, shape);

– Gumbel-double-Frechet (dist="double-Frechet" and copula="Gumbel") with param-
eters par <- list(dep, dim, scale, shape);

– Frank-double-Frechet (dist="double-Frechet" and copula="Frank") with parameters
par <- list(dep, dim, scale, shape);
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– Clayton-double-Pareto (dist="double-Pareto" and copula="Clayton") with parame-
ters par <- list(dep, dim, scale, shape);

– Gumbel-double-Pareto (dist="double-Pareto" and copula="Gumbel") with parame-
ters par <- list(dep, dim, scale, shape);

– Frank-double-Pareto (dist="double-Pareto" and copula="Frank") with parameters
par <- list(dep, dim, scale, shape).

Note that above dim indicates the number of d marginal variables.

Value

A matrix of (n× d) observations simulated from a specified multivariate parametric joint distribu-
tion.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall/CRC Press, Boca Raton,
USA.

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate
heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

rtimeseries, rbtimeseries

Examples

library(plot3D)
library(copula)
library(evd)

# Data simulation from a 3-dimensional random vector a with multivariate distribution
# given by a Gumbel copula and three equal Frechet marginal distributions

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# sample size

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginal distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# Data simulation from a 3-dimensional random vector a with multivariate distribution
# given by a Gaussian copula and three equal Student-t marginal distributions

# distributional setting
dist <- "studentT"
copula <- "Gaussian"

# parameter setting
rho <- c(0.9, 0.8, 0.7)
sigma <- c(1, 1, 1)
Sigma <- sigma^2 * diag(dim)
Sigma[lower.tri(Sigma)] <- rho
Sigma <- t(Sigma)
Sigma[lower.tri(Sigma)] <- rho
df <- 3
par <- list(sigma=Sigma, df=df)

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Student-t
# marginal distributions and a Gaussian copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

rtimeseries Simulation of One-Dimensional Temporally Dependent Observations

Description

Simulates samples from parametric families of time series models.

Usage

rtimeseries(ndata, dist="studentT", type="AR", par, burnin=1e+03)

Arguments

ndata A positive interger specifying the number of observations to simulate.
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dist A string specifying the parametric family of the innovations distribution. By
default dist="studentT" specifies a Student-t family of distributions. See De-
tails.

type A string specifying the type of time series. By default type="AR" specifies a
linear Auto-Regressive time series. See Details.

par A vector of (1 × p) parameters to be specified for the univariate time series
parametric family. See Details.

burnin A positive interger specifying the number of initial observations to discard from
the simulated sample.

Details

For a time series class (type) with a parametric family (dist) for the innovations, a sample of size
ndata is simulated. See for example Brockwell and Davis (2016).

• The available categories of time series models are: Auto-Regressive (type="AR"), Auto-
Regressive and Moving-Average (type="ARMA"), Generalized-Autoregressive-Conditional-
Heteroskedasticity (type="GARCH") and Auto-Regressive and Moving-Maxima (type="ARMAX").

• With AR(1) and ARMA(1,1) times series the available families of distributions for the inno-
vations are:

– Student-t (dist="studentT") with parameters: ϕ ∈ (−1, 1) (autoregressive coefficient),
ν > 0 (degrees of freedom) specified by par=c(corr, df);

– symmetric Frechet (dist="double-Frechet") with parameters ϕ ∈ (−1, 1) (autoregres-
sive coefficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), specified
by par=c(corr, scale, shape, smooth);

– symmetric Pareto (dist="double-Pareto") with parameters ϕ ∈ (−1, 1) (autoregres-
sive coefficient), σ > 0 (scale), α > 0 (shape), θ (movingaverage coefficient), specified
by par=c(corr, scale, shape, smooth).

With ARCH(1)/GARCH(1,1) time series the Gaussian family of distributions is available for
the innovations (dist="Gaussian") with parameters, α0, α1, β specified by par=c(alpha0,
alpha1, beta). Finally, with ARMAX(1) times series the Frechet families of distributions is
available for the innovations (dist="Frechet") with parameters, ϕ ∈ (−1, 1) (autoregressive
coefficient), σ > 0 (scale), α > 0 (shape) specified by par=c(corr, scale, shape).

Value

A vector of (1× n) observations simulated from a specified time series model.

Author(s)

Simone Padoan, <simone.padoan@unibocconi.it>, https://faculty.unibocconi.it/simonepadoan/;
Gilles Stupfler, <gilles.stupfler@univ-angers.fr>, https://math.univ-angers.fr/~stupfler/

References

Brockwell, Peter J., and Richard A. Davis. (2016). Introduction to time series and forecasting.
Springer.
Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expec-
tiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

https://faculty.unibocconi.it/simonepadoan/
https://math.univ-angers.fr/~stupfler/
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See Also

expectiles

Examples

# Data simulation from a 1-dimensional AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# Graphic representation
plot(data, type="l")
acf(data)

scedastic.test Test on the effect of concomitant covariate on the extremes of the re-
sponse variable

Description

Given observed data, perform a Kolmogorov-Smirnov type test comparing the cumulative distribu-
tion function of the concomitant covariate, defined as X | Y > t, with t being the threshold, against
the cumulative distribution function of the random vector of covariate.

Usage

scedastic.test(data, k, M = 1000L, xg, ng, bayes = TRUE, C = 5L, alpha = 0.05)

Arguments

data design matrix of dimension n by 2 containing the complete data for the depen-
dent variable (first column) and covariate (second column) in [0,1]

k integer, number of exceedances for the generalized Pareto

M integer, number of samples to draw from the posterior distrinution of the law of
the concomitant covariate. Default: 1000
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xg vector of covariate grid of dimension ng by 1 containing a sequence between
zero and the last value of the corresponding covariate

ng length of covariate grid

bayes logical indicating the bootstrap method. If FALSE, a frequentist bootstrap on
the empirical cumulative distribution function of the concomitant covariate is
performed. Default to TRUE

C integer, hypermparameter entering the posterior distributyion of the law of the
concomitant covariate. Default: 5

alpha double, significance level for the critical value of the test, computed as the
(1 − alpha) level empirical quantile of the sample of distances between the
empirical cumulative distribution function of the concomitant and complete co-
variate. Default: 0.05

Value

a list with components

• Delta maximum observed distance between the empirical distribution functions of the con-
comitant and complete covariate

• DeltaM vector of length M containing the sample of maximum distances between the empiri-
cal distribution function of the concomitant complete covariate

• critical double, critical value for the test statistic, computed as the (1 − alpha) level em-
pirical quantile of DeltaM

• pval double, p-value

References

Dombry, C., S. Padoan and S. Rizzelli (2025). Asymptotic theory for Bayesian inference and
prediction: from the ordinary to a conditional Peaks-Over-Threshold method, arXiv:2310.06720v2.

Examples

## Not run:
# generate data
set.seed(1234)
n <- 500
samp <- evd::rfrechet(n,0,1:n,4)
# set effective sample size and threshold
k <- 50
threshold <- sort(samp,decreasing = TRUE)[k+1]
# preliminary mle estimates of scale and shape parameters
mlest <- evd::fpot(samp,
threshold,
control=list(maxit = 500))

# empirical bayes procedure
proc <- estPOT(

samp,
k = k,
pn = c(0.01, 0.005),
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type = "continuous",
method = "bayesian",
prior = "empirical",
start = as.list(mlest$estimate),
sig0 = 0.1)

# conditional predictive density estimation
yg <- seq(0, 50, by = 2)
nyg <- length(yg)
# estimation of scedasis function
# setting
M <- 1e3
C <- 5
alpha <- 0.05
bw <- .5
nsim <- 5000
burn <- 1000
# create covariate
# in sample obs
n_in = n
# number of years ahead
nY = 1
n_out = 365 * nY
# total obs
n_tot = n_in + n_out
# total covariate (in+out sample period)
x <- seq(0, 1, length = n_tot)
# in sample grid dimension for covariate
ng_in <- 150
xg <- seq(0, x[n_in], length = ng_in)
# in+out of sample grid
xg <- c(xg,
seq(x[n_in + 1],

x[(n_tot)],
length = ng_in))

# in+out sample grid dimension
nxg <- length(xg)
xg <- array(xg, c(nxg, 1))
# in sample observations
samp_in <- samp[1:n_in]
ssamp_in <- sort(samp_in, decreasing = TRUE, index = TRUE)
x_in <- x[1:n_in] # in sample covariate
xs <- x_in[ssamp_in$ix[1:k]] # in sample concomitant covariate
# test on covariate effect
test <- scedastic.test(

cbind(samp, x[1:n]),
k,
M,
array(xg[1:ng_in], c(ng_in, 1)),
ng_in,
TRUE,
C,
0.05

)
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## End(Not run)

sp500 Negative log-returns of S&P 500.

Description

Series of negative log-returns of the U.S. stock market index Standard and Poor 500.

Format

A 8784 ∗ 2 data frame.

Details

From the series of n = 8785 closing prices St, t = 1, 2, ..., for the Standard and Poor 500 stock
market index, recorded from January 29, 1985 to December 12, 2019, the series of negative log-
returns.

Xt+1 = − log(St+1/St), 1 ≤ t ≤ n− 1

is available. Hence the dataset (negative log-returns) contains 8784 observations.

testTailHomo Test on tail homogeneity

Description

Given observed samples and effective sample size, return the results for a likelihood ratio-type test
on tail homogeneity.

Usage

testTailHomo(y, k, alpha = 0.05)

Arguments

y list, containing the samples on which the test is to be performed

k integer, number of exceedances for the generalized Pareto

alpha double indicating the confidence level for the test. Default: 0.05
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Value

list of 7 containing

• gamHatP the pooled tail index

• VarGamHatP the variance of gamHatP

• CIGamHatP (1− α) level confidence interval for gamHatP

• BiasGamHatP bias term of gamHatP

• logLikR value of the likelihood ratio-type of test statistic

• PVal p-value of the test

References

Daouia, A., S.A. Padoan and G. Stupfler (2024). Optimal weighted pooling for inference about the
tail index and extreme quantiles, Bernoulli, 30(2), pp. 1287–1312.

Examples

## Not run:
# generate two samples of data
set.seed(1234)
y1 <- evd::rgpd(500, 0, 1, 0.2)
y2 <- evd::rgpd(700, 0, 2, 0.7)
y <- list(y1 = y1, y2 = y2)
# set effective sample size
k <- 50
# perform test
test <- testTailHomo(y,k)

## End(Not run)
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